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Abstract 

Physical systems can frequently be modeled by polynomial equations. 

Then interesting properties of the systems can be determined from the 

zeros of the polynomials. Standard codes compute those zeros from the 

coefficients in a stable fashion. But what should be done if the 

zeros are inherently hypersensitive to changes in the coefficients 

of their polynomials? Newly developed methods can be used to explain 

such an ill conditioned polynomial by exhibiting a nearby polynomial 

with one or more multiple zeros which are well conditioned. Further- 

more these methods can be abused by uncritically replacing the ill 

conditioned polynomial with the well conditioned one nearby. When 

such a replacement is unwarranted, bounds can be obtained on the varia- 

tion of the zeros corresponding to the uncertainty in the coefficients. 

One way to obtain such bounds is to exploit the nearby well condi- 

tioned polynomial to obtain a revision of the classical Pulseux 

fractional power series expansions of the zeros. 

These notions have been Investigated experimentally 1n a long 

series of computer calculations. In the course of these calculations 

the existing stock of numerical techniques has been augmented. A new 

way is now known for computing the condition numbers which measure the 

condition of zeros. The previously known equations to be solved for 

the nearest polynomial with a single multiple zero are now joined by 

1 
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equations for the nearest polynomial with a complex conjugate pair of 

double zeros and equations for the nearest polynomial with several 

distinct double zeros. All these equations have simplified forms 

because certain Lagrange multipliers vanish in the complex case. But 

some examples demonstrate that when only real perturbations are con- 

sidered, the Lagrange multipliers do not always vanish. Finally, there 

is some theory about the location of the nearest polynomial with a 
double zero. 

The numerical experiments show that Newton's method may be used 

successfully to solve the equations in the cases of greatest interest 

when the expected result is sufficiently simple. The techniques may 

also be applied to polynomials such as Wilkinson's famous example whose 

zeros are the integers from 1 to 20. But then the numerical results 

suggest that that ill conditioned polynomial can not be explained 

successfully as a small perturbation of a well conditioned polynomial. 

Instead Wilkinson's polynomial lies in a region of polynomial space 

whose geometry seems to be exceptionally complicated. 

Bounds on uncertainties in zeros corresponding to uncertainties 

in coefficients are customarily computed with Taylor series. For ill 

conditioned simple zeros these Taylor series have radii of convergence 

that are much too small. The well conditioned multiple zeros of a 

nearby polynomial are not amenable to Taylor series expansions but may 

be expanded in a Puiseux fractional power series. These fractional 

power serias, however, also have unsatisfactory regions of convergence. 

Out by choosing a different starting point the convergence problem of 

the Puiseux series can be overcome to produce, in principle, series 

that converge rapidly throughout the region of Interest. In practice 

v 
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those series are used to produce realistic bounds on the uncertainties 

in the zeros. Full exploitation of these techniques awaits adequate 

facilities for symbolic algebra. 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

1.  What is the Problem? 

The research to be reported in the following chapters deals with 

"ill condition" of the zeros of polynomials. "Ill condition" means 

unusually great sensitivity of the zeros to changes in the coefficients 

of the polynomial. 

Consider the following example: a physicist has determined that 

a parameter of interest may be determined by finding the zeros of a 

polynomial. He computes the coefficients of the polynomial and solves 

for its zeros with any of a number of computer codes which find zeros 

of polynomials. Then the computer states that his polynomial of degree 

six has the following zeros: 

-2.0 

-1.0 

+ .99999998 ± .000104625 1 

+2.0 

+3.0 

Perhaps being distrustful, the physicist computes the coefficients of 

the polynomial which has exactly these zeros. He finds that those 

reconstituted coefficients agree with the original coefficients of 

the polynomial he gave the computer to well within the uncertainty 

In the coefficients, which were derived from experimental data. He 

will usually find that the differences between those sets of coeffi- 

cients are comparable in size to a few rounding errors, so he seems 

to have no grounds for complaint with the computed result. 



None the less there may be sound physical reasons why the answers 

he seeks can not have imaginary components. Then why do they appear 

in his answer? Is he justified in ignoring them? The methods pro- 

posed in the following chapters provide a way of dealing with these 

questions. 

Those methods would "explain" the physicist's quandary as follows. 

First they would show that the two complex conjugate zeros are 

extremely ill conditioned. That is, small changes in the coefficients 

comparable with experimental error could easily cause them to un-'^rgo 

much larger real or complex changes. The ill condition arises from 

the fact that the physicist's polynomial is \/ery close to a polynomial 

with a double zero. In fact, the methods we will discuss show that 

changing each coefficient of the polynomial by as little as one part 

in 10 suffices to cause the polynomial to have a double zero at 1.0. 

That double zero is well conditioned, in a sense to be explained later. 

Therefore the physicist might "ameliorate" the condition of the ans- 

wers to his problem by accepting a double zero at 1.0 in place of the 

complex conjugate pair if the experimental uncertainties in the coeffl- 
g 

cients exceed one part in 10 and there 1s physical justification for 

assuming that his answer should be in the form of a double zero. 

Where that justification 1s lacking, the 111 condition of the result 

is a warning signal that a misjudgment 1n the design of the experiment 

and computation may have Invalidated the results. 

I 
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2.  What is 111 Condition? 

We turn now to precise definitions of terms like posedness, 

condition, and stability. The terms have been defined by numerical 

analysts in many different and sometimes inconsistent ways; our defi- 

nitions will be those used by W. Kahan in numerical analysis courses 

at the University of California, Berkeley [18]. These definitions 

are also close to those in the widely used text by Dahlquist and 

Björck [6]. 

The definitions to follow make sense if one thinks of a problem 

having a definite set of input data and a similar set of output data 

which we call the solution. For instance, in the problem of deter- 

mining the n complex zeros of an n'th degree polynomial, the n + 1 

coefficients of the polynomial are the input data and the n zeros 

are the solution. In contrast, the "problem" of finding a polynomial 

approximating a given function is incomplete until we specify a 

criterion for choosing the best aDproximation. That criterion could 

be regarded as fixed, and hence part of the problem, or subject to 

change, and hence part of the data. 

If furthermore the data are regarded as uncertain, then the infor- 

mation on the size of the uncertainty becomes part of the data. This 

information is often expressed in terms of a metric or norm on the 

space from which the input data are drawn. The norm itself may also 

be part of the input data if it is subject to change. The purpose of 

the norm on the input data, for exar.ple, is to provide a way for the 

problem poser to specify which inputs are so close together as lo be 

indistinguishable from his point of view. In addition, there may be 

a norm on the output solution with a similar purpose. As we shall 

rsci MM 
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see, the poser may be obliged to provide these norms even if the inDut 

data are regarded as exact. 

Within this framework a problem is well posed if it (1) has a 

solution which (2) is unique and (3) varies continuously when the 

input data vary continuously. Consequently an ill posed problem may, 

for some input data, have several solutions or none or the solution 

may change discontinuously when the input data is changed continuously. 

The answer to the question of whether a problem is well posed is 

either yes or no. 

Given a problem that is analytically well posed, we call it well 

conditioned if changes that we consider negligible in the input data 

can only cause changes in the solution that we also consider negligi- 

ble. Conditioning can be measured by computing the partial derivatives 

of the solution with respect to changes in the input data. If the 

appropriate norm of these pan  derivatives, called the condition 

number, is too large, the problem is ill conditioned. Unlike posed- 

ness, then, there is not a sharp break between well and ill condi- 

tioned problems, but rather a continuum. 

From our point of view, stability is a property of algorithms, 

rather than problems, and relates to the question, "Does this 

algorithm always produce a solution as good as can be expected, con- 

sidering the condition of the problem?" In »resting numerical 

algorithms almost always fail to produce the mathematically correct 

solution to a problem. This is because such algorithms usually commit 

rounding errors due to finite precision arithmetic and truncation 

errors due to terminating infinite analytical processes after a finite 

number of steps. 

» 
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A stable algorithm has the property that the uncertainty it con- 

tributes to the solution of a problem is not much larger than the 

uncertainty that would be associated with small changes in the input 

data. Figures 1.1 and 1.2 illustrate a stable algorithm applied to an 

ill conditioned problem. A stable algorithm applied to a well condi- 

tioned problem yields nearly the correct answer. Many stable 

algorithms, moreover, can be shown to deliver the exact solution of 

a problem with input data very near the given input data, even if that 

data is ill conditioned. 

To conclude the definitions, recall that the key to the problem 

of the physicist in section 1 was to find the polynomial with a double 

zero nearest his polynomial. In general, the polynomials with one or 

more multiple reros form a subset of the space of all polynomials. 

These subsets have been called pejorative manifolds by W. Kahan [17], 

because polynomials near a pejorative manifold always have some ill 

conditioned zeros. Since they are the only manifolds that interest 

us, we will use the term manifold in subsequent chapters to mean one 

of these pejorative manifolds. Thus the manifold of n'th degree monic 

polynomials with one m-tuple zero is a surface with dimensionality 

n-m + 1 in the space of all n'th degree monic polynomials. 

The distinction between wrong answers caused by an ill conditioned 

problem and wrong answers caused by an unstable algorithm applied to 

a well conditioned problem is well known in the west mostly because 

of the work of Wilkinson [34], But similar concepts are also present 

in the contemporaneous work of the Soviet author V. Zaguskin [37]. 

Zaguskin defines condition numbers with respect to small finite rather 

than infinitesimal perturbations. In well conditioned cases his 
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Input Data Space Output Solution Space 

I 

Figure 1.1. Effect of ill conditioning: a ball in the input 
space maps into a cigar-shaped region in the 
solution space. 

Figure 1.2. A stable algorithm maps the input point * 
into the region bounded by the dotted ball 
which 1s not much larger than the Image of the 
input ball. 

^^____ 
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methods give an idea of how much the zeros of a polynomial may vary 

as the polynomial varies within its finite uncertainty. In chapter VII 

we will show how such notions may be applied even for an ill condi- 

tioned polynomial. There we will show how to develop the whole series 

of which the infinitesimal condition number is simply a bound on the 

first term. 

______^_^^_^^_ J 
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3.  Examples of Definitions 

An example might help to clarify the definitions of the previous 

section. Consider the problem of finding the smaller real zero of the 

quadratic polynomial 

f(x) * x2 + 2x + l -e for |e| < 0.1 . 

We see that for e = 0, there is a real double zero; for e < 0 

there are no real zeros; for e > 0 there are two distinct real 

zeros. Since in some cases of the input there is no solution to this 

problem, it is ill posed. 

Suppose we restrict the problem so 0 < e < 0.1 . Now the pro- 

blem has become well poser but ill conditioned. Consider the depen- 

dence of the zeros of f ■»■   e: 

x
+ " 

1 i ^e 

dx 

IF s * 1/(2v€) ' 

So as e ■*■ 0 this condition number becomes arbitrarily large in 

magnitude. Any small error in the original data or in the computation 

may be magnified by an arbitrarily large factor. Note how in this 

case, as in many others, approaching ill posedness corresponds to 

worsening condition. See Kahan [17], 

What are the pejorative manifolds in the quadratic case? There 

is just one, the manifold o' quadratics with double zeros. In the 

space of quadratics 

x2 + bx + c , 

the manifold of polynomials with double zeros 1s just the subset of 

■■     ■     ■■■■■■■■ ■■-■■ :•■-■■    ■■''■■ ""'■ ■■    ■ ; i ■   ■■■ -■ 
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polynomials with 

2 
b = 4c 

It is evident that the previous polynomial 

x2 + 2x + 1 - e 

lies rather near this manifold; that nearness causes the ill condition 

of its zeros. 

Stability may be illustrated by considering the problem of find- 

ing the small real zero x of the polynomial 

x   - 2x + <5 , 

■20 for   |6| < 10     .   The usual formula yields 

x = 1 -/U6 . 

On most computers there will be numbers 6 large enough to be 

representable but small enough that the computed value of 1 -6 is 1. 

In this case the computed x * 0. For many purposes this is unaccep- 

tably far from the correct answer which is x tk A check of con- 

dition numbers shows that they are small. That the fault lies with 

the algorithm implementing the usual formula, rather than with the 

problem, can be seen by considering another less well known but equi- 

valent formula for the zero: 

x • 6/(1+/P?) . 

An algorithm implementing this formula will compute an approximately 

correct answer for small 6   even in the face of rounding error. 

   ' 



This should come as no surprise since this polynomial is obviously far 

from the pejorative manifold. 

W 
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4.  What is 111 Condition of Zeros of Polynomials? 

The chapters to come will discuss methods for dealing with ill 

conditioned zeros of polynomials. In order to see why such methods 

might be useful, we consider first the problem of finding the zeros 

of a polynomial from its coefficients. Several algorithms are now 

known which are not only stable in the sense outlined above, but also 

are more efficient than other (unstable) methods. Best known of these 

is that of Jenkins and Traub [14]; another good one is Brian Smith's 

version of Laguerre's method [30]. FORTRAN implementations of both 

these algorithms are available in the IMSL library [13]. The sta- 

bility of these algorithms may be shown for a specific problem by com- 

puting the coefficients of a polynomial whose zeros are exactly the 

zeros computed by the algorithm. Then the coefficients of the original 

polynomial do not differ much from the coefficients of the polynomial 

recomputed from the numerical solution. 

But if we happen to know the exact zeros of the original polyno- 

mial, we may find that they differ greatly from the zeros that were 

computed. If this 1s the case — that a stable algorithm has produced 

results that are more than slightly wrong — then the problem must be 

ill conditioned. In the previous section we saw that the condition 

of zeros of a quadratic polynomial was related to how nearly the poly- 

nomial came to having a double zero. It 1s a basic fact about the 

zeros of analytic functions that nearness to a function with a multiple 

zero corresponds to 111 condition of the zeros. 

As a simple example consider the analytic function 

f(x) - (T-a)ma(T) 

■MÜ 
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where g(i) is analytic and g(a) f  0. If f(i) is perturbed by 

eh(-r), h(a) f  0, then the perturbed zeros B satisfy 

f(ß)-eh(ß) = 0 , 

m e - (g(ß)/h(ß))(ß-a) 

In chapter VII we will see that the last equation can be transformed 

to express ß-a as a power series in e ' . Thus there are m zeros 

ß which converge to o as e ■+ 0. 

Implicit differentiation reveals the dependence of a solution ß 

on the data c: 

dß . 1 1  
de " e -.rglB^l/m, (g'(6)   h'(B)f • 

As e •*■ 0, ß + a, g(ß) -»• g(a), and h(ß) -»- h(a). Simultaneously 

the condition number |^|| Increases like l/(|e|1"1/m) without 

bound, so the condition of each ß becomes infinitely bad. 

One way to visualize the meaning of the condition number 1s to 

think of the process of finding a zero of a polynomial as a mapping 

from the space of polynomials into the complex plane. Then we can 

ask how an Infinitesimal neighborhood in polynomial space is mapped 

Into the complex plane. If that neighborhood 1s spherical then its 

image will usually look elliptical. In a well conditioned case the 

ellipse 1s small; in an ill conditioned case large. In the case of an 

infinitesimal neighborhood of a polynomial with a multiple zero, the 

Image 1s a large star-shaped region. 

____ 
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The research to be described is motivated by the desire to know 

how large these image regions may become for polynomials within a finite 

ball. The condition number tells how large the ellipses may be in the 

infinitesimal case; it can be used to bound the first term of a power 

series. Just when that first term is large, however, the power series 

turns out to have a short radius of convergence. In fact, if a mani- 

fold of polynomials with multiple zeros runs through the ball, then 

the usual power series can not converge at every point in the ball. 

But by exploiting that manifold as described in chapter VII we 

may be able to get« In principle, a different kind of series that con- 

verges throughout the ball. The notion underlying that series may be 

used, in practice, to obtain a bound on the size of the image of the 

ball. 

If the polynomial from which we expand lies on a manifold, the 

nature of series expansions of its multiple zeros is different than 

when the polynomial lies off the manifold. The series includes frac- 

tional powers of the perturbations. This is not a severe handicap. 

However it may be that there are a priori reasons for knowing that 

the only significant perturbation» are those which are along the mani- 

fold and maintain multiplicities. Then reasonable condition numbers 

can be defined which are finite with respect to those perturbations. 

Furthermore the expansions used to bound the changes in the zeros take 

much simpler forms. 
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5.  Treating the Symptoms of 111 Condition 

Large condition numbers are a warning that small changes in the 

input data cause large changes in the solution of a problem. In the 

next section we consider ways of identifying the underlying difficulty, 

but now we will merely treat the symptoms: substantial changes in 

our answers are being caused by seemingly insignificant changes in our 

data or by rounding and truncation errors in our algorithms. 

If our data is derived experimentally, we could try to perform 

more careful experiments in order to get the variation in our answers 

within acceptable limits. If the data is not subject to empirical 

uncertainties, then the errors in our algorithms are the cause of our 

symptoms. We may use increased precision to reduce the effect of 

rounding errors, and we may carry out more steps of Infinite processes 

to reduce truncation errors. For polynomials, this would mean carry- 

ing out more steps of Iterative processes such as Newton's method. 

If the coefficients of a polynomial are known exactly, then 

rational arithmetic may be used to determine the zeros to any required 

accuracy. Plnkert [41] discusses such a method. These methods are 

relatively slow on present computers, but they do eliminate 111 con- 

dition as a factor affecting accuracy of computed zeros. Exact arith- 

metic methods are Inappropriate, however, when the coefficients ire 

not precisely known; then explicit account should be taken of 111 

condition. 

Changing the algorithm does not change the condition of the pro- 

blem, but an unstable algorithm can aggravate our symptoms of 111 

condition. Sometimes we can reformulate the problem to take advantage 

of a stable algorithm. In other cases we can reformulate the problem 
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to make 1t better conditioned. 

Thus we will see later that the condition of a zero of a poly- 

/ nomial may sometimes be improved by translating the polynomial so that 

the zero to be found is near the origin. In certain cases this may 
i 

be helpful, but care must be taken that the translation is computed 

with insignificant rounding error, The translation of the coeffi- 

cients is computed effectively by evaluating the polynomial and n of 

its derivatives. Usually such translations must be performed in 

higher precision when ill conditioned zeros are involvfd. Stewart 

[31] shows that the effect of such translations, carried out in con- 

ventional fashion, is comparable to the effect of rounding errors in 

the coefficients of the original polynomial. Kahan [18] has shown 

that unconventional algorithms can sometimes do better than would be 

expected from [31], but his algorithm 1s a fluke. 

If one 1s concerned with numerical treatment of a polynomial that 

arises experimentally, it may be that careful translation 1s the most 

reasonable method of "ameliorating" 111 condition that has no obvious 

source. Such translation 1s justified 1f the zeros represent a phy- 

sical quantity whose origin 1s arbitrary. The coordinates of a point 

on a line, for Instance, are sometimes arbitrary, but not if something 

Interesting, such as a body exerting a central force, occurs at the 

origin. 

However performed, translation amounts to attacking the problem 

of 111 condition piecemeal, one zero at a time, rather than trying to 

deal with the overall condition of the problem. And the results of 
ß 

translation 1n no way "explain" the ill condition. 
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6.  Explaining 111 Condition 

The methods to be presented later try to "explain" ill condition 

by finding the nearest polynomial with all its zeros well conditioned. 

That polynomial will be on one of the pejorative manifolds of polyno- 

mials with multiple zeros. At the end of chapter II we will see that 

if an m-tuple zero is sufficiently ill conditioned there must be a 

polynomial with an m+1-tuple zero fairly close by. So we may in 

succession try to find the nearest polynomial with a double zero, a 

triple zero, two double zeros, and so on. We may count ourselves 

successful if we find that one of these nearest polynomials has all 

of its zeros well conditioned and yet is close enough to our original 

polynomial. When we are successful, our starting polynomial may be 

explained as a small perturbation of a polynomial with some multiple 

zeros, all of which are well conditioned. 

The reader with some experience may feel that the nearest such 

polynomial should be apparent from inspection of the distribution of 

zeros, for ill conditioned zeros often form obvious clusters. After 

all, an m-tuple zero subjected to a suitably small perturbation will 

usually split up Into m distinct zeros, and such configurations 

should be easily recognized. However, the ill conditioned simple 

zeros scatter so quickly that they may soon lose their clustered 

aspect. As we shall see later when we discuss Wilkinson's polynomial, 

It Is sometimes Impossible to guess just by Inspection of the zeros 

what the nearest polynomial with well conditioned zeros might be like. 

We may find, moreover, that no small perturbation will get us to 

a polynomial with all zeros well conditioned. Rather, by moving 

increasing distances we rcay Increasingly Improve the condition of the 

ÜH 



zeros, but in order to improve the condition of all zeros as much as 

we want it is necessary to move much further than we want. Wilkinson's 

4 polynomial seems to be of this sort; it is discussed in chapter X. 

There is no natural division between the polynomials which are 

■      explainable and those which are not; however we set a somewhat arbi- 

trary boundary by our choice of norm and tolerance. 

If we do find a nearby polynomial with all of its zeros well con- 

ditioned with respect to variations that maintain multiplicities, then 

we might say that moving to the new polynomial has ameliorated the 

problem of ill condition. Such a viewpoint makes sense only if the 

new polynomial is indistinguishable from the original and it is 

reasonable to hypothesize that the original problem could have a built 

in constraint in favor of multiple zeros. This constraint may have 

existed unrecognized heretofore, or perhaps there was no convenient 

algorithmic way to provide for it when finding the zeros of the poly- 

nomial from the coefficients. Such a constraint may reveal itself in 

the following way: an experimental system has the property that the 

observed parameters always seem to be well conditioned functions of 

the controllable parameters. The mathematical model for the system, 

however, might lack that well conditioned relation of output to input. 

Should we add something to the model? We could add a constraint in 

favor of some multiplicity structure, e.g. one double zero, that is 

inspired by a feature of the physical system. For instance a symmetry 
1      in the experimental system might correspond to a double zero in the 

polynomial. 

Constraints upon the form of the solution should n<rt be imposed 

merely to obtain a well conditioned solution. Not all experimental 
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systems are well conditioned, and not all problems should have well 

conditioned solutions. Suppressing annoying numerical properties may_ 

be equivalent to ignoring the most important and interesting features 

of the system. It may be that the observed ill condition corresponds 

to an important feature of the problem that is not properly reflected 

in our theory. In other cases ill condition may mean that the problem 

we seek to solve is so close to being ill posed that it is senseless 

to try to solve the problem in the presence of error. 

Example. Figure 1.3 is an example of a physical system. It is 

the well known damped harmonic oscillator discussed in elementary 

physics courses; see, e.g., Kibble [20]. A mass m may travel up and 

down. It is attached through a spring to the roof; the other end is 

attached to a shock absorber (dashpot). If the mass is moved from 

its rest position and released it will eventually return to its rest 

position, because of friction forces in the dashpot. The goal of an 

engineer might be to design the dashpot so that the mass will return 

to its rest position as quickly as possible after a perturbation. By 

adjusting the dashpot, the mass may be caused to return to its rest 

position as rapidly as possible without oscillation. The system is 

then said to be critically damped. The engineer may decide that the 

spring force on m is -kx for a k > 0 which can be measured to 

perhaps three significant figures. An investigation of the friction 

forces of the fluid in the dashpot might confirm that the friction 

forces on m can be approximated by -dx for a constant d > 0, 

which can again be measured to a few figures. Finally the mass itself 

can be measured. 
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spring constant k 

mass   m 

--H friction coefficient   d 

7777777 
Figure 1.3.   A damped harmonic oscillator. 

rimmmmMm^j^m 
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Then the mathematical model corresponding to the stated physical 

assumptions is that the restoring force on m is -kx - dx so 

20 

mic + dx + kx = 0 , 

and x(0) -  xQ and x(0) = vQ are the initial conditions. The solu- 

tions to such linear ordinary differential equations with constant 
c+t coefficients are usually linear combinations of exponentials e 

c t 
and e "  where c+ and c_ are the zeros c of the quadratic 

polynomial 

mc +dc + k 

c
+* If c+ ■ c_ then the solutions are linear combinations of e +  and 

c+t 
te  . The quantity to be minimized is the maximum time constant for 

ct the components of the solution. The time constant for e  is defined 

to be -1/Re c which corresponds to the non-oscillatory, decaying 

part of the motion of m. (The oscillatory part is governed by Im c.) 

Then 

max(Ri^7'ReIV) s< 

2m 
d - /d<-4mk 

2m 

for d > /4mk , 

Y for 0 < d < /Jmk" 

For d > 0 this is minimized by letting d = 4mk. In that case 

c+ * c_. 

Given m and k the engineer can compute an optimal d which 

he can obtain approximately by adjusting the dashpot. 

The engineer may then mass produce these assemblies. Of course 

there will be variations within tolerances in m, k, and d. Some of 
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the assemblies „„ probab,y exMbn oscjnaory motions ^ ^^ 

Then the question win arise: ere these variations f™ unit to unit 

due to the no™, variation of exponents within tolerances, or is 

,      there an error in the design, or in the clained tolerances? 

We can resolve this question by asking: given the polyn^ia, 

corresponding to one of the production units. 

P(c) ■ c2 ♦ $c ♦ (*) , 

is the nearest polynomial with a double zero within the distance 

allowed by the tolerances on (-) and (-)? If h.   is the tolerance * m      m      0 
on {p   and Ak the tolerance on (-) then we might measure pertur- 
bations 

q(c) = ac + ß 
by 

Id2 = (A,2 + ( ß ,2 . 
V  > k 

Then if the distance to the nearest polynomial with a double zero were 

less than JZ   in this norm, the components would likely be within 
tolerance. 

Suppose we have adjusted the assembly to be critically damped. 

Then we may carefully measure m, k, and d. If we wanted to compute 

the time constant from the data and the model, we would be wise to 

incorporate a constraint 1n favor of double :eros in our polynomial 

solver, for that constraint corresponds to a fact we know about the 
physical system. 

In contrast, if we carefully measured m, k, and d on an 

(unadjusted) assembly from the production line, and we wished to 

_^^_^__ 
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compute the time constant, it would be folly to incorporate a con- 

straint for a double zero in the polynomial solver. If we did we 

would always think that the assembly was critically damped. 

Even when the assembly is at or near critical damping, where 

small changes in m, d, or k produce large changes in c  or c , 

such small changes produce only small changes in the solution of the 

differential equation, measured in an appropriate norm. That is, an 

important feature of the physical system is well conditioned. We 

encounter ill conditioning numerically because we choose to think of 

the solution of the equation as a sum of exponentials. As a conse- 

quence of this point of view we then solve a polynomial equation to 

find the time constants of the exponentials. Solving the polynomial 

equation is the step that may be ill conditioned. 

Similar mechanical problems are used as examples in the text of 

Carnahan, Luther, and Wilkes [4, exercises 4.23-4.26 and example 3.1]. 

There the natural circular vibrational frequencies of mechanical 

systems with several components are computed. These frequencies are 

obtained from eigenvalues of symmetric matrices. ' iltiple eigenvalues 

merely mean that two different modes of circular vibration happen to 

have the same frequency because of chance or some physical symmetry. 

Viewed as an eigenvalue problem, eigenvalues of symmetric matrices are 

always well conditioned [5]. An Inappropriate reformulation of an 

eigenvalue problem as a polynomial problem 1s responsible for the 111 

conditioned zeros Carnahan et aj_ obtain In some of the numerical 

results given in their example 3.1. 

22 
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7.  What Do We Do With the Explanation? 

Once the nearest polynomial has been found which "explains" some 

ill conditioned problem, what should be done next? 

If we just substitute the zeros of the ameliorated or regularized 

polynomial for the zeros of the original polynomial, we may be guilty 

of covering up important features of the problem, 

One way to investigate those features is to answer the following 

question: How do the zeros of the polynomial vary when the coeffi- 

cients of the polynomial vary within their respective uncertainties? 

When all zeros are well conditioned this question is easily answered 

by expressing changes in the zeros as a Taylor series in changes in 

the polynomial, of which only the first term or two are needed because 

the series converges quickly. 

In the interesting case, however, we find that a conventional 

Taylor series approach will not work for ill conditioned zeros. The 

radius of convergence of the series never exceeds the distance to the 

nearest polynomial with a multiple zero. If we actually move to that 

nearest polynomial, we then find that conventional fractional power 

series expansion methods still tend to founder because of short radii 

of convergence. 

In chapter VII these problems are discussed and a method 1s pro- 

posed for obtaining expansions for changes In zeros that converge in 

a much larger region than conventional techniques. The proposed 

method depends on using the nearest well conditioned polynomial as a 

starting point for an expansion in two phases. The first phase retains 

the multiplicity structure of the starting point while the second 

phase continues in a conventional manner. Thus the symbolic 

aäiHfiUiau 



1.HHUII.IJII      i.PiJii.|«i HUPWS ,r^Mwu.utm.i. A .^^iiiM^mmmmmmmmimmmm 

24 
™ 

detennination of a series expansion depends on numerical means for 

determining the most suitable starting point. Most of the difficulty 

of the problem is in the numerical part. Analytical difficulties 

preclude getting the actual expansions, but the idea may be used in a 

very practical way to get bounds for the changes in the zeros as the 

coefficients vary throughout the entire region of interest. Smith 

[42] explains how Gerschgorin circles may also be exploited to obtain 

similar bounds. 

iaiiiMMttHJuu^iUiiäMMi 1 
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8.  Survey of Previous Results 

Prior to the computer era relatively little attention was devoted 

to the problem of ill conditioned simple zeros beyond recognizing that 

small perturbations tended to break up multiple zeros into ill condi- 

tioned simple zeros. Thus the multiple zeros themselves were usually 

unfairly considered to be ill conditioned. The behavior of multiple 

zeros under perturbation has long been a matter of interest to analysts 

and algebraists; the fractional power series discussed in chapter VII 

have been known since the eighteenth century. 

Another facet of multiple zeros is their effect on convergence of 

zero finding algorithms. It has long been known, for instance, that 

the convergence of Newton's method is only linear in the vicinity of a 

multiple zero. Consequently much effort has been expended in develop- 

ing zero finding iterations that perform better near multiple zeros. 

Such methods have been discussed by Traub [33] and Ostrowski [25], 

among others; Stewart's is a recent example of such work [32]. 

James Daniel [7] has recently studied the problem of improving 

approximations to multiple zeros. He suggests that averages of clus- 

tered ill conditioned simple zeros may be taken to determine the 

multiple zero of which they are apparently approximations, The exam- 

ples he cites show that his suggestion may sometimes be helpful for 

double zeros and perhaps for higher multiplicities if accuracy require- 

ments are not very stringent. Daniel's work has not been Incorporated 

in any widely available codes for polynomial zeros. The reason may be 

that a conventional zero-finding code with deflation would, in the 

vicinity of an m-tuple zero, find first an 111 conditioned member of 

an m-member cluster. Then it would find an 111 conditioned member of 
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an m-1-member cluster caused by perturbing an m-1-tuple zero which is 

not the same as the m-tuple zero of the original problem. Then the m 

ill conditioned zeros that are averaged together at the end are not 

all perturbations of the same multiple zero and consequently this 

average does not make a very good estimate of any multiple zero. 

To J. Wilkinson [34] must go credit for publicizing the fact that 

ill condition and apparent clustering are not equivalent characteris- 

tics of zeros of polynomials. This fact does not seem to be explicitly 

recognized previous to Wilkinson's work. The polynomials he chose as 

examples are still being studied profitably as in chapter X of the 

present work. 

Wilkinson also brought to the attention of many readers the facts 

that condition could not only be rigorously defined but could be mea- 

sured as well. 

In 1975 Dunaway [8] proposed a different method for dealing with 

polynomials with multiple zeros. Her work is based on the fact that 

the greatest common divisor (GCD) of such a polynomial and its deri- 

vative 1s a polynomial whose factors are the multiple zeros of the 

original polynomial, but of multiplicity one less. GCD algorithms 

have long been used for studying polynomials whose coefficients are 

exactly known. Recent work by Collins [5] and others has been In the 

context of symbolic algebra systems employing exact rational arithmetic. 

Dunaway1s Idea was to Implement a traditional GCD algorithm In 

standard finite precision floating point arithmetic. There the key 

problem 1s determining when a term 1n a polynomial remainder sequence 

may be considered to vanish, indicating that an approximate GCD has 

been found. As Dunaway remarks, that 1s a difficult problem 1n finite 

26 
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precision arithmetic. She does not give details as to how she resolved 

it, and it is not clear that her procedure could be automated. If 

that were possible, it might be an attractive method for investigating 

the multiplicity structure of the zeros of polynomials without speci- 

fying that structure in advance. In contrast, the methods to be pre- 

sented in subsequent chapters require that one specific structure be 

investigated at a time ~ one double zero, a triple zero, two double 

zeros, etc. 

The present investigation is based on the work of W. Kahan 

described in [17]. Kahan displayed the connection between ill condi- 

tion and nearness to the manifold of polynomials with multiple zeros. 

In [17] and also in [19] he determined how to compute condition numbers 

and how to derive the equations to be solved for the nearest polynomial 

with a double or triple zero. He also perceived that the manifolds 

could be exploited to provide a better way to express perturbed zeros 

as an expansion in terms of the perturbation. 

Kahan went as far as theory unaided by extensive computational 

experience could be expected to go; this dissertation supplies some of 

that computational experience and some of the theoretical extensions 

motivated by that experience. 

27 



9.  Summary of Findings 

The principal original results of this research are: 

1) A new method for computing condition numbers for zeros of 

polynomials, valid for certain norms only, is presented in chapter II. 

2) The equations to be solved for the nearest polynomial with 

two complex conjugate double zeros, two double zeros, and three or 

more double zeros are presented in chapters IV and V. 

3) When k complex multiple zeros are sought, the equations 

that need to be solved are less complicated than might have been 

thought at first. It is shown that k Lagrange multipliers may be 

assumed to vanish for any interesting solutions. This result, pre- 

viously known [19] for the case of a single multiple zero, has been 

extended to the case of several multiple zeros and the case of a com- 

plex conjugate pair of multiple zeros in chapters IV and V. But a 

counterexample has been discovered which indicates that, in the most 

common case of a real polynomial subject only to real perturbations, 

these results are not always applicable. 

4) Some results on the location of the nearest polynomial with 

a double zero are given in chapter VI. 

5) The details of a new technique for bounding changes in the 

zeros of a polynomial are presented in chapter VII. This technique, 

originally suggested by W. Kahan, exploits nearby manifolds of poly- 

nomials with multiple zeros whereas conventional techniques are 

usually hindered by the presence of those same manifolds. 

6) Extensive computer codes of methods presented in earlier 

chapters were prepared to test the theory experimentally. In chapter 

IX examples are given of successful application of these codes. 

28 
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7)  Extensive computer results are given in chapter X to support 

the conclusion that one polynomial mentioned by Wilkinson [34] is 

intrinsically not amenable to treatment of the type proposed in the 

previous section, due to its position near a particularly complicated 

part of the manifold of polynomials with double zeros. 

__■■■_ 
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10. Notation 

In the following chapters we will consider perturbations of monic 

algebraic polynomials p, of degree n, with real or complex coeffi- 

cients: 

P(T) 
n n 

T" + I  P-T n-j 

We will usually follow the conventions of using lower case Greek 

letters for scalars, lower case Romen letters other than i through 

n for vectors and polynomials, and capital Roman letters for matrices, 

non-linear operators on vectors, and sometimes for functions. But p. 

and A., will usually represent scalar elements of p and A. Rn 

and C represent the real and complex vector spaces of dimension n. 

The perturbations will be polynomials of degree at most n - 1, 

not usually monic: 

Q(T) ■ I v' 
j=l J 

n-j 

We identify the space of perturbations q of a polynomial p with a 

vector space of dimension n and, in the obvious basis 

{^-V-2 T.l> , 

the elements of the vectors are the coefficients of the polynomials: 

q2 
- Q(T) ■   I q,T 

n-j 

Any norm for Rn or Cn may now be imposed. We will be interested 

30 

in a weighted i~   norm on r     defined by 
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lqlH - (q*Wq)
1/2 = BW1/2ql2 , 

where q* denotes conjugate transpose and W is Hermitian positive 

definite and usually diagonal as well. In the diagonal case we write 

""""WJ1^1 • 

There is a dual space of functionals u* which has the usual 

norm 

or 

«u% - sup J^L = (uVV2 , 

^'M 

in the diagonal case. Most often the functional we are interested in 

is e *, the functional that evaluates a polynomial q at c: 

e;*q ■ q(c). In our basis e;* = (C
n"V"2--C 1). 

One frequently used operator is the derivative operator D which 

maps Cn to Cn and has the matrix form 

f 0 

n-1 0    0 

n-2 0 

•   • 

0 \ o 

n 

1 0 
 r 

>" 

* s 

We can for instance write e *D for the functional which evaluates 

the k'th derivative of a polynomial at c. In fact we will often be 

interested in the operator which computes a polynomial and Its first 
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m-1   derivatives at   5.   We will define it as 

A. = 
'S 
'I 
e *D 

e?*D' 
*pm-l 

m 

so 

VB 
f q(0 

. A1' M> 

Corresponding operators D and Ä can be defined for polynomials of 

degree n; their matrices operate on vectors of dimension n + 1. 

Then 

f pU) 

/m-1). 
A^p = 

I P '(C) J 

A  1s m by (n+1). 

It 1s handy to note here that the tn rows of A are independent 

for m < n. For 1f we apply A  to the vector q representing 

(T-c)k we find 

f 0 1 
• 
0 
k! 
0 V position k+1 

By letting k run from 0 to m-1 we find that the rank of A, 

1s Indeed m. 
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Frequently we will be using c as a symbol for a multiple zero 

of a nearby polynomial and a will be a symbol for a zero of the 

original polynomial. We will write e* for e * and A for A. 

In chapters II and VII, however, A will be an m-1 by n matrix 

A = 

CD' m-2 

Those chapters also use the n by n-m+1 matrix 

Vl 

1 
(m-U(-a) \ 

(-a) 

0 

m-1 

0 

(m-1)(-a) 

(-a) m-1 

Multiplying an n-m+1 vector q by P , corresponds to multiplying 

a polynomial of degree n-m, q(x), by (T-ct)m~ . The columns of 

P , are linearly independent since (T-OI)  q(t) ^ 0 if q f  0. 

When presenting numerical results we will often use FORTRAN 

E-format, e.g. 

.123E-5 means .123 *i(f5 . 



CHAPTER II 

COMPUTING CONDITION NUMBERS FOR ZEROS OF POLYNOMIALS 

1.  Definition of Condition Numbers for Simple Zeros 

In this chapter we explain several ways to compute condition 

numbers for zeros of polynomials. In the last section we see why ill 

condition is always associated with nearness to a polynomial with one 

or more double zeros. 

Condition numbers are intended to be a numerical measurement of 

condition. They tell us how large a change in the solution may result 

from a given change in the data. In general, for a problem which con- 

verts m input data items d. into n components of a solution s., 
1 3s,   J 

there could be nm condition numbers y., = |r..|, r.. = 33% and 

the condition of the problem could be defined to be a norm of the 

matrix of r... If there is a norm |»|. defined on the solution and 

a norm I-I- defined on the data, then the most suitable norm for r, 

the matrix of r.., is 

■n . «pflgji  . 

One could just as well consider relative condition numbers, 

Tu" ~ 
d1 
sj 

• 
3Sj 

3d1 

as long as s, t 0. 

For our purposes we will generally consider a separate condition 

number for each zero of a polynomial but we will lump together changes 

1n the coefficients and measure the combined change by means of a norm. 
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Let p be a monic polynomial of degree n, 

P(T) - T" + I  P.T
n-J , 

j-1 J 

and let   6p   be a perturbing polynomial of degree   n-1,    not neces- 

sarily monic, representing a change in the coefficients: 

35 

n-j MT) ■ I 6p,T 
j=l J 

Let a be a zero of p(r) and a + 6a a zero of P(T)+6P(T). 

Definition. The (absolute) condition number, y, of a with 

respect to changes <5p is 

(1.1) Y = lim sup  lx -. 
A-^Oföp w1th],6pl 

II«PI»AJ 

As we have seen, this limit is infinite for multiple zeros a, a 

defect which we shall remedy shortly. 

There is one aspect of ill condition of zeros of polynomials 

that may surprise those accustomed to thinking of 111 condition pri- 

marily in terms of systems of linear equations. In that context norms 

are usually chosen 1n such a way that the condition number of a matrix 

with respect to inversion 1s never less than 1. There is no such 

natural choice of norms for zeros of polynomials and their condition 

numbers may take on any positive value. We shall see In chapters IX 

and X that well conditioned zeros can be very well conditioned indeed: 
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in a certain reasonable norm, the condition number of one of the zeros 

of Wilkinson's polynomial is about l.E-16. 

Our definition of condition and condition number is similar to 

that of Wilkinson [34], and is also a special case of a more general 

formulation proposed by Rice [27], Both Rice and Wilkinson also pro- 

pose relative condition numbers which we would define as 

Yrel ~ "foT 

for a f 0. In this case we would choose a norm for 6p which would 

measure relative changes in the coefficients. An example is 

nspi I 
j=i 

6p 1/2 

if all p. f 0. Other norms can be devised suitable for the case when 

some p. is zero. It is the responsibility of the definer of a pro- 

blen to decide the appropriate norm. For instance, if none of the 

zeros of p are 0, then the polynomial p(t), whose positive zeros 

are the moduli of the zeros of p, may be used to define a norm: 

I6pl I 
j-l 

6P, 1/2 

None of the p. are 0 as long as p f 0. 
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2.  Definition of Condition Numbers for Multiple Zeros 

The previous discussion shows that our definition of condition 

number does not make sense for a multiple zero, which would apparently 

have an infinite condition number. That infinite condition is caused 

by the fact that most arbitrary infinitesimal perturbations applied to 

a polynomial with a multiple zero tend to break up that multiple zero 

into ill conditioned simple zeros. 

In order to have a sensible definition of condition number 

for a multiple zero we must only allow perturbations which do not 

destroy the multiple zero. Here is an example: consider a real monic 

cubic polynomial, 

P(T) = (T-a)2(T-ß) = T3 - (2a+ß)r2 + (2aß+a2h - a2ß , 

and small quadratic perturbations, 

q(t) = q^ +q2T + q3 , 

which preserve the multiplicity of o so that 

p(x)+q(T) * (T-(ot+e))2(T-(ß+e)) . 

We discover that 

<\} ' 2e + 6 

q2 » 2oe + 20e + 2o6 + (2c6 + e
2)  , 

q3 « 2o$e + o
26 + (2oe6+ Be2 + e29) , 

where the parentheses segregate higher order terms which we shall 

ignore. Thus the three parameters q.. are defined in terms of the 

two variables e and 6. We can choose any two of the q. as the 
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independent parameters of the perturbation and solve for e m terms 

of them. Thus If we choose q}    and q2> we find 

e s (q2-^1)/(2(3-a)) 
and 

6 = (^^/(S-a) 

to first order 1n   e   and   6. 

Then we can see that the ratio of change 1n solution (e) to changt 
in data (q,) is 

£      q2/qra 
q,       2(ß-a) 

which will be well defined unless 8 s a. which would mean that the 

multiplicity of a was not two, as we thought, but actually three. 

In general let 

P(T) = (T-afq(T) ,   q(a) f  0 . 

Definition. The condition number of a 1« 

(2.1) Y = Urn 
A*0 

sup 
over 5p maintaining] 
multiplicity of o 
[with 16oI - a 

Jfal 

In order to appreciate graphically what is meant by constraining 

perturbations to maintain multiplicity, consider the drawings 1n 

Figures II.1-II.3 of the space of monic real cubic polynomials. That 

space 1s three dimensional and the set of small perturbations about a 

point in that space 1s a closed ball. The drawings are based on a 

norm In which closed balls look like spheres; see Figure II.1, 
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The set of monic real cubic polynomials with double zeros is a 

two dimensional algebraic surface (manifold). The set of small per- 

turbations maintaining multiplicity of a double zero is the intersec- 

tion of the ball and that manifold. If the manifold were a plane that 

set might be an oval. In general that set resembles a bent coin or 

an ellipse warped into three dimensions; see Figure II.2. 

The double zero is well behaved in the face of perturbations that 

keep the polynomial on the manifold but away from the one dimensional 

submanifold of real cubic polynomials with a triple zero. That sub- 

manifold is an algebraic curve and a subset of the surface mentioned 

previously. The set of small perturbations maintaining a triple zero 

is the intersection of the ball and that curve — amounting to a seg- 

ment of the curve, as in Figure II.3. 
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-- ball 

3 
Figure II.1. A small ball about p in R containing pertur- 

bations dp such that I6pl < A. 

surface of polynomials 
with double zeros 

ball 

Figure II.2. The set of small perturbations about p 
maintaining a double zero resembles a 
bent coin. 
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\A ) 
\ 

ball 

curve 

Figure II.3. The set of small perturbations about p 
maintaining a triple zero is a segment 
of a curve. 

J 
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3.  Condition Numbers for n-tuple Zeros 

As a start we derive a condition number for the simplest case, 

that of a single n-tuple zero. When the polynomial has the form 

P( 
n 

T) = (T-a)n = T"+ IP/-' , 
J-lJ 

where 

n-» _  n! 
Pj'(J)f-)J.  CP £ TH=3TI7T 

then <5p has the form 

6p(x) * (T-(o+6a))n - (T-a)n 

»J _ r \J\^.n-j * I (;){(-a-6a)J-(-a)Jhr 

j«l J 

■ (-5a) I (;W-(-a)j"V"j to first order . 
j-l J 

Then, recognizing an expression for (T-O)  , 

Y' S
6

U
P

P m '  — I« 
kn-17  i n ■"">   '   I^V'I 

In particular for the diagonal W norms 

Y " 

(i/v'S1 

except if o ■ 0, 

n»G7 
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4-  Resolution of Condition Number into Components 

We show now that the condition number we have defined is a product 

of two independent factors. Thus for the polynomial 

P(T) = (r-a)m n (T-C.) 
j=m+l   J 

the condition number for a will be shown to be 

la 
m 

n |a-C.| 
j=m+l  J 

where the numerator a/m will depend on the zero a but not on the 

other zeros c.. The denominator depends on the other zeros s. but 
J J 

not on m nor on the norm. We require that a f  c so that m is 

indeed the true multiplicity of a. 

W. Kahan demonstrated this fact in [17] after showing that, for a 

monic polynomial of degree n, an m-tuple zero may be regarded as an 

analytic function of the first n + 1 -m coefficients of that poly- 

nomial. This may be compared to the well known result that a simple 

zero is an analytic function of the n coefficients of a monic poly- 

nomial. In both cases analyticity is confined to regions in which the 

zero does not increase or decrease in multiplicity. 

We shall infer the resolution of the condition number directly, 

however. Let 

P(T) = (T-t)mq(t) 

and let 6p represent infinitesimal variations in p such that 

p + 5p has a multiple zero -» + M of multipl icity m. Then 
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m (p+6p)(r) = (T-(a+6a)),n.(q+6q)(T) , 

and in consequence, keeping only first order terms, we find 

6p(r) = (T-a)m_1{(T-a)6q(T)-mq(T)6a} . 

Thus 6p is displayed as a function of 6q and 6a. 

We claim 

Y «     Sup    M 
fconstrained) ^P" 

5p 

1  1 
* |q(a)| 

sup 
r of degree 

< n-m 

Ir(a)| 

»(T-af-^rd)! 

and we prove it by showing the one-to-one correspondence between such 

r and such 5p. Namely let 

so 

r(r) * (T-a)5q(T) -mq(x)6a 

6p(T) ■ (T-a)m"V(T) . 

Since 6p has degree < n-1, r has degree < n-m. The dimension of 

the vector r is n-m+1, however, since the polynomial r(r) is not 

monic. 

Any such r defines 6p and hence 6q uniquely: 

6a = -r(«? ,   6q(T) = r(T)»mq(T)6a 
mq(a) T -a 

The numerator of the expression for   ^(T)   does vanish when   T = a 

so that expression is indeed a polynomial rather than a national func- 

tion.    Therefore we may write 

I faI  _       1 |r(a)| 
Bpl " m|q(a)| * i(TKX)

m--r(T Id-«)—r(r)| 
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n n 
and, since q(x) =  II (T-C-), then |q(a)| =  n |a-C.|. 

j=m+l   J j=m+l   J 

As claimed, then, we may write the condition number for a as 

(4.1) 

1 

'         n 
n   |o-?J 

j=m+l       J 

> 

and 

(4.2) - a = -  sup 
m   m- 

>(o) 
v"nvT 

["degree r"| |(x-a) " r(x)J 
{  <_ n-m 

is the part of the condition number that is independent of the other 

zeros £.. The next few sections will be devoted to explaining how to 
J 

compute a. 
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5.  Computing o for Arbitrary Norms -- Dual Method 

W. Kahan [19] has provided the following method for computing a 

in arbitrary norms. We shall see that it leads to solving a standard 

kind of linear approximation problem, namely 

c  = min fls* + £*A||/(m-l)! , 
A* 

for vectors s* and .'* and a matrix A to be defined. 

To prove the statement above, write the formula for a   as 

sup 
|e*r| 1 a ' sup 

|e*ZSy| 

V of degree! |pm-lr|1 fy of degree) IPm-lSyl 

< n-m < n-1 

where y e Cn   and S is a map from Cn onto cn'ffl+1. Z is the 

operator which fills out n-m+1-vectors with zeros to form n-vectors: 

n-m+1 

■ n 

ZS is reauired to be a projector. Finally P , is the linear 
m-i 

operator from Cn"   to Cn mentioned in chapter I which represents 

multiplication by (T-I)""
1
. 

Our goal is to transform the sup problem into a dual min problem. 

We therefore state a duality theorem of Buck [3], The setting for the 

theorem is a normed vector space E with its dual space of functionals 

E*. If M is a subspace in E and W-   its annihilator 1n E*, 
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the theorem states 

|v *x| 

XTM~^"
=
 

min ,vo*"v*8 ' X€M      v*eMJ- 

For the application at hand,   E   is   Cn.    M = {P   ,Sy|yeCn}.    Then 
m-1    ' 

MJ- = {v*|v*Pm ,S = 0}.    We discover 1     m-1 

SUP |TD    '"c'jl        = m1n 

eCn    IIPm-lSyl       (u*PffllS-v*P   ,S) 
ei v     m-l       0   m-l ' 

«u*» . 

Then if there is a vn* such that vn*PM ,S = e *ZS we will have the 
u 0 m-I   a 

sup we seek, expressed as a min. 

Since the columns of P , are linearly independent, the range 

space of P_ i* must have full dimension so the equation 

Z*e -  P ,*vn may be solved for vft. Therefore 
a  m-1 u u 

(5.1) o ■    min    Bu*B . 
(u*Pm ,S = e *ZS) *■  m-l  a  ' 

Let us see what the solutions of u*P„ ,S = e *ZS are; amonq 
m-l   a " 

i/ 
them we will find that of minimal norm. As in chapter I let D 

denote the operator which maps polynomials to their k'th derivatives. 

Then we find that 

u* • ea*D
m"1/(m-l)! 

is one solution of the equation. For consider any y(i) and let 

r(x) be its image; r « Sy. Then 

ea*Dm"1pm-lr s  aT-),B-1r(T)}(m"1,(a) 

■ (m-l)!r(a) = (m-l)!e *Zr . 
a 
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The next step is to determine the solutions of the homogeneous 

equation u*P ,S = 0. The rank of S is n-m+1, as is the rank of 
m-1 

P ,, and therefore their product. Since u* has dimension n, the 

null space of (P ,S)* must have dimension m-1, Therefore we seek 
m-1 

a subspace of solutions u* of dimension m-1. 

We may easily verify that {e *,e *D,...,e *D  } is a set of 

solutions to u*Pm-1S = 0, because e *DkPm-1r = {(T-ct)
m"1r(T)}^(a) 

=0 for 0 <_ k £ m-2. These m-1 linearly independent solutions 

therefore form a basis for the solution space and we may insert the 

general solution of the inhomogeneous equation in the formula (5.1) 

to get 

m-2 
(5.2) 1 m-1 a '  /- i\I mln |e *D  + I X.e *DK| (m-1)! ,  » a     urn k a  I k=0 

If we write the m-1 vector I* -  (XQ»X.,...,X .), the m-1 by n 

matrix 

A * 

a 
e *D 
a 

e *Dm"2 a 

and the vector s* * e *D  , we have 
a 

(5.3) a = min ls*+£*AI/(m-l)! . 
I* 

Consequently a may be found by solving the indicated linear approxi- 

mation problem, as claimed. 
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In the special case   a = 0   we fi nd 

ü = 1(0 •••010... o)| 

, t 
n-m+1 position 
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6.  Computing o for L, Norms -- Dual Method 

We now evaluate a   for   l~   norms. First we note that 

-1/2 
flu*Bw = llu*W '  $2   and» using the theory of least squares, the 

minimal residual may be expressed as 

o = min |W"1/2s + W"1/2A**|2/ (m-1)! 

= {s*(W"1-W"1A*(AW"1A*)"1AW"1)s}1/2/(m-l)! . 

In particular, if m = 1 then A = 0 and s a e  so 

(6.1) a - (ea*U~\)m 

j=l      JJ 

If m 

find 

2, then A ■ e *, s = D*e , and after some computation we 

a   '—yQin-j)   a      vw. 7-—, si—} , 
ICT J X|az|n-J/Wj 

or in a computationally more economical form, 

2 _ j=l wj k*j+l wk  
a   s * "    '     ''  n  '   ' 

J-l J 

For   m > 2, 

„      1      m4n r r    1       (n-J)l      n-j-m+1 , mf2       (n-j)! ,n-j s TiTiTT f a w7 (n-j-mil)!0 + ^h itfftkjT« 
2 1/2 
} 

This may be written in conventional least squares format as 
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where 

a = min ls-Ä*Äl9/(m-l)! 

Sj      (n-j-m+1)! a AV 

►      =    (nIil!     n-j-k (    vl/2 
j,k     (n-j-k)! a        /lV 

Finally, if   a « 0,    then   a - V(wn+1_ffl)
1/2. 

' 
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7.  Computing a  for ftp Norms -- Primal Method 

In the previous section we computed o by solving the dual 

problem. Our goa1 now is to find c directly. First convert the 

expression 

sup |r(a)| 
^T r of degree] |(r-a)  r(r)| 

. <n-m  J 

into the vector notation: 

|e*r| 
0 ~~sup KT^ m-1 

But if we define a new norm  ärIL = 8Pm ,rl then by definition 
r m-1 

a = «ea*.p 

1/2. in the dual norm.    Now   BrIL - l(Pm ,*W   ,) ' rIL   in our   JL   norm so r    m-I  m-I    c c 

(7.1) 1/2, -"A.i\i»'i2 
1. J/2 

^'m-lX-l^V" ' 

We can check this result by comparison with the simplest case, m = 1. 

Then PQ =1 and 

.,-1 e *V'e ,   I  |/|n-J/w, 2,n-j 
a   a 

J-l 

which is just the result obtained in the previous section. 
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8.  Computational Details 

We shall see how to compute the non-zero elements of P ,*WP ,. m-1  m-1 
Let P denote a generalized matrix of the P , type corresponding 

to multiplication by a monic polynomial t(t) of degree d. For 
2        2 2 

instance, if   m = 3,    P2   corresponds to    (x-a)    = T   -2CXT + CX .    Then 
2 

tQ = 1, t, = -2a, and t2 = a  are the elements of t. P has the 

form of an n by n-d matrix 

f 1 
t 1 

so 

Then 

rM 
ti_j if j < 1 < j+d , 

0   otherwise 

(P*WP) 
ij 

k=min(i,j) 
I   w.t. *t. . if |i-j| < d , 

k»max(i,j) k k^ k J 

0 otherwise , 

so this matrix has bandwidth 2d + l in addition to being positive 

definite Hermitian. 
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9.  Condition Numbers for Complex Conjugate Zeros of Real Polynomials 

The formulas derived in the previous sections were valid for 

complex zeros of a complex polynomial subject to complex perturbations. 

It is easy to verify that the same formulas apply for real zeros of a 

real polynomial subject to real perturbations. The case of complex 

zeros of a real polynomial subject to real perturbations, however, is 

more complicated. The requirement that the perturbed polynomial 

remain real amounts to an extra constraint. We now define condition 

numbers that reflect this constraint. Let 

P(T) - (T-a)Vä)mq(T) ,   q(a) f  0 , 

represent a real polynomial with a complex m-tuple zero at a and 

consequently at a as well, with Im a } 0. Considering infinitesimal 

perturbations we define 

(p+6p)(x) = (T-{affa))"(T-(ötE))"(q*äq){T) 

and to first order we find 

5P(T) = (T-a)m"1(T-5)n'1[(T-a)(T-5)6q(T)-2mq(T){(Re 5a)t - Re(a6a)}] 

Definition. The condition number of a with respect to real 

perturbations of p is 

(9.1) Y =  Tim    sup    |6° 
A+0 Constrained 6p}  p 1 [with I6pl «A 

Let 

r(i) ■ (T-o)(T-5)6q(x) - 2mq(i){(Re 6a)i - Re(ä6a)} 
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Then real 6q and complex <5a define r uniquely. Conversely, 

6a = (/T r(a))/(2m(Im a)q(a)) 

and 

.„/ x _ r(r)+2mq(T){(Re 6a)t - Re(ä6a)> 
6q(x)  (T-oJd-a) ' 

As before we can verify that the expression for 5q defines a poly- 

nomial rather than a rational function. 

Thus there is a one-to-one correspondence between r and 

(6a,6q). Substituting in (9.1) we find 

M _     1  I r(a) j 
1 " 2ml Im a| Iqlajl t     - '^„^ ,,  xm-1, -.m-1 , ,, H '   M^  ' (r of degree) \\x-a)      (x-a)  r(t)| (r of d 

I < n-J -2m+l J 

or 

(9<2) Y = 2m|lma||q(a)| ac ' 

i 

| Thus in this case &i well, the condition number consists of (1) a numera- 

tor o /(2m|Im a|) independent of the other zeros c,, and 
1 c n J 

(2) a denominator |q(a) | ■  n |a-£.|. 
i j«2m+l  J 

The limit Im a ■*■ 0 corresponds to a and ä coalescing to 
I 
I form a zero of greater multiplicity 2m. Therefore the condition 

f number becomes infinite as Im a •*■ 0. 
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10. Computing o_ for £« Nonns 

We turn now to the problem of computing a     by a method similar 

to the primal method for computing o. Define C , mapping Rn~2m+^ 

into Rn as the operator corresponding to multiplication by 
ml      ml 

(T-CX) " (t-ä) "  for complex a. Then in matrix form, C. for 

instance is n by n-2: 

Consequently 

C, = 

1 

-2 Re a 

ki2 1 

-2 Re a 
i i2 

I r(a) sup sup 
r 

r*e e *r  a a 
r*Cm l*WCm Ir 

m-l  m-1 

As before C ,*WC , is real symmetric positive definite so 
m-i  B-I 
•1/2 

(Cm-l*WCm-l) exists.    We find that 

1/2. rl/2* 
2            ?*(cm i*wcm-i)       e«e

rt*<
c

m l*
WCm i)       ? c _ _,,_        m-i     m-1 a a     m-1     m-1 

a     = sup 
c        r r*r 

The supremum is over real r but the matrix e e * is complex so a 
  g g     "■ '  

Rayleigh quotient argument does not apply directly. Instead write 

e * « u* + i v* where 
g 

n-1 
u* » Re(e *) = (Re(g ') ••• Re g l) 

g 
and 

n-1 
v* * Im(e *) = (Im(gn'') ••• Im g 0) . 
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Then observe that for any real s, 

s*e e *s = s*(uu* + vv*)s . 

Applying the Rayleigh quotient theorem now we find 

ac
2 « max eigenvalue[(Cm_1*WCm_1)"

1/2(uu*+vv*)(Cm_1*WCrn_1)"
1/2] 

= max eigenvalue[xx*+yy*] 

where 

A rank two matrix has two positive eigenvalues which can be fojnd 

by reduction to a matrix of dimension two. For an eigenvalue X   and 

an eigenvector (8x+<j>y), 

(ex + $y) « (xx* + yy*)(6x + <fry) 

Therefore 

x*x   x*y 'e' 
» X 

'e' 

y*x   y*y J UJ -e
- 

and A is an eigenvalue of the indicated two by two matrix. The 

largest eigenvalue of that matrix 1s 

(10J)    xn»y " j(x*x+y*y+((x*x-y*y)2 + 4|x*y|2)1/2) 

where 

etc. Then 

x*y • «*(C,,.1*MCB.,)v 
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(10.2) 

and 

(10.3) 

a2 = >. c   max 

v -    max 
yc " 2m|Im o||q(o)| * 

What does this result mean in the case m = 1? For comparison, suppose 

we computed the condition number y   of the same complex a using the 

general formula for complex polynomials (4.1, 6,1). The result is 

" ^*w"le«/ (2m|Im aj[q(a)|) . a 

To compute o     note that x*x = u*W" u, etc., and 

wK*«V*1/2> 
2     2 

where A * (x*x-y*y) +4|x*y| . From the Cauchy-Schwartz inequality 

we can deduce that 

and consequently 

(ea*W"
1ea)

2 = (x*x+y*y)2 > t > 0 , 

K*W"V 1 \nax <- *a*"\  • 

Then we find that 

(10.4) 1 £ Y/YC < SZ 

for m a 1. 

When m > 1, however, the discrepancy between these condition 

numbers can be much greater. In fact, as Im a •* 0 for fixed Re a 

and m > 2, Y/Y- increases without bound. The condition numbers 

differ because Y maintains the multiplicity of only one zero intact 

ir-irrri. 
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but YC maintains intact the multiplicities of two zeros. 

Computational Details for o_ 

The computation of aQ    is similar to that of a, except the 

matrix C|n_1 corresponds to multiplication by t(t) = (T-a)""1(T-ä)m"1 

a polynomial of degree d = 2m-2. Then C^ is n by n-2m+2, and 

(C  *WC ,).. = 
m-1  m-rij 

k=min(ri, j)+d 

k=max(i,j) k K * k_J     ' - 

otherwise . 
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11. General Condition Numbers 

The first condition numbers we considered reflected the condition 

of a zero subject to infinitesimal perturbations that maintain the 

multiplicity of (only) that zero. The second condition numbers 

reflected condition with respect to perturbations that maintain the 

multiplicity of that zero and its complex conjugate. We can go fur- 

ther, restricting the class of allowable perturbations to those that 

maintain whatever multiplicity structure we consider important in the 

other zeros. 

For instance, let 

( K    m.-\ 
P(T) =  n (T-CX. ) K 

Lk=l  K 
q(T) , 

where 

q(ok) f 0 ,  1 < k < K , 

and we consider only perturbations of the form 

m, 
(p+6p)(i) = n (T-(a.+5a.)) K(q+5q)(r) 

k-1    K  k 

so that 

«P(T) - 
m.-l 

il(T-ok) 
k {|n(T-ok) 6q(t) - q(x) I (m. 6a. n (r-a.))} 

k K   Ktfk       J 

In the usual way define the condition number y   of a with respect 

to such constrained perturbations to find that 

(11.1) Y =  _ .   su0     LdslL 

(r-ak) 
mk"1l   I 
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In the   Jl2   case we can write the sup as 

« 2 - cm rJC!£e*r •* 
°G   - sup  WflGF 

where G is the operator corresponding to multiplication by 

m,-l    m9-l      m„-l 
(T-a]) ' (T-O2) 

L    ...(T-aK) 
K 

Then as before, in the case of complex perturbations of a complex 

polynomial, 

aQ
2 = e*(G*WG)_1e 

where 

„* _ i    n-1  n-2     , x e* = (a,   a,   • • • a, 1) . 

The case of real perturbations of a real polynomial with real a, is 

similar. If a, is a complex zero of a real polynomial, however, 

then one of the other a. = ä,, and 

aQ
2 =-2-(x*x + y*y+{(x*x-y*y)2 + 4|x*y|2}1/2) , 

where x*x = u*(G*WG)* u, y*y = v*(G*WG)" v, etc., as in the previous 

section. 



62 

12. Application of the Idea of General Condition Number 

Let 

p(r) = (T-CX) (T-ä)mq(T) 

be a real polynomial with complex a. We have defined y  , the con- 

dition of a with respect to real changes which maintain conjugate 

m-tuple zeros a + 6a and ä + 6~ä. We want to compare y     to y?» 

the condition of a with respect to complex changes that maintain 

m-tuple zeros a + Sa and a + 63. 6a and 63 are no longer neces- 

sarily complex conjugate. 

We have seen that 

rc  2m \lma\Wa)\'jj''*x+**y + A***-y*y)2 + *\**y\ 2 

where x*x = u*(C ,*WC ,)" u, u* = Re(e *), etc. C , corresponds m-I  m-i a        m-I 

to (i-a)  (x-a) 

To compute y?» let 

P(T) = (T-a)m(T-ä)mq(T) . 

Then 

Yo » i ! n • T-U- Se *(GWG)"1i T2  m|q(a)| |a-ä|  a a 

ml     m 1 
where G also corresponds to (r-a) " (t-ä) " . Since G Cm-T 

2m|lma1l|q(a)| /x*x*^ 

and 

(12.1) 1 < — < /I . 
-Yc- 
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In contrast to (10.4), our present result is independent of m. 

It means that the restriction to only real perturbations does not 

affect the condition number by a very large factor compared to a con- 

dition number that allows complex perturbations that maintain the 

multiplicities of the same number of complex zeros. 
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13. Condition Number vs. Distance to Submanifold 

Now that we have a definition for condition number, we shall show 

why ill condition prompts us to look for the nearest polynomial with a 

more multiple zero. Consider the polynomial 

p(x) = (T-a)mq(x) . 

Then the condition of a is 

v - _if_- (m-Dla 

Consider the second polynomial 

p(t) = (T-a)n(q(T)-q(a)) . 

This polynomial has an m+1-tuple zero a. Further if 

AS ip-pl - |q(a)||(T-a)
m| , 

then 

^l(T-a)m« 
(13.1) A = 2 . 

That is, if n, m, a, and the norm are regarded as fixed, then ill 

condition (large y)  always implies that there is a nearby polynomial 

with an m+1-tuple zero. Furthermore, the closest such polynomial may 

be much closer than the estimate above. 

W. Kahan has suggested [17] that ill condition may be explained 

by exhibiting the nearest polynomial with a higher order zero. Ir, the 

vector space of polynomials with m-tuple zeros, that corresponds to 

finding the closest point on the manifold of polynomials with m+1-tuple 
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zeros. If that m+1-tuple zero is still ill conditioned, then there 

must be a nearby polynomial on the submanifold of polynomials with 

m+2-tuple zeros. 

In the chapters that follow we shall describe ways of finding the 

nearest polynomial with an m-tuple zero. 



CHAPTER III 

FINDING THE NEAREST POLYNOMIAL WITH AN m-TUPLE ZERO 

1.  Introduction 

In the first chapter we discussed why_ we might wish to find the 

nearest polynomial with an m-tuple zero. Now we will demonstrate how 

to set up the equations to be solved. The problem amounts to a con- 

strained optimization, and in general we find we must solve a non- 

analytic equation in a complex variable. 

We first consider the simplest cases of the problem: finding 

the nearest real polynomial with an n-tuple zero or with a double zero. 

Then we discuss the equations to be solved for the stationary 

points which include the nearest complex polynomial with an m-tuple 

zero. Finally we explain two kinds of second derivatives which may 

be used for deciding which stationary points are actually minima. 
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2-  The Nearest Polynomial with an n-tuple Zero 

We will start by considering the simplest case — that of finding 

the nearest polynomial with an n-tuple zero. We suppose that we have 

a monic polynomial 

P(t) = I" + I  p.Tn"J 
j=l J 

and we wish to find another polynomial 

g(x) = (x-,)n = T" + j(J)(-c)^, (J)=3TT^ 
j=i 

such that Bp-qi is a minimum. 

Since 

p-q = pr(j)(s)j 

and depends only on c we can easily find the equation to be solved 

for stationary points with respect to a given norm. We will demon- 

strate the equation for the weighted £2 norms as follows: 

If we let the raised dot • represent j^y  or jj^p  we f1nd 

(Irl*) = f*Wr + r*Wr - 2Re(r*Wr) . w 

For stationarity we require then Re(r*Wr) * 0. Thus 

0 « Rej (Pj-tJJt^J^Kjj.J-J-c^-M)-«) 

>nw ij-1 nw_M-h*; = ReIwj.j(j
n)(-0J-,(pj-(j)(-0

J)*c 
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or 

(2.1) f(c) = l w..j(;)(-C*)j-1(p.-(;)(-ÜJ") - 0 . 

f(s) is thus our first example of a non-analytic function of a 

complex variable c. To find a zero would in general require solving 

a system of two equations in two real variables. 

In the most interesting case, however, we would be interested in 

real perturbations q-p of a real polynomial p. If ? were complex 

then q-p could not be real, so we need only consider cases for which 

C is real. Then the real function f(c) is 

(2.2) f(C) • »,»(!),+«)♦« I Wj^ljK-^'^JkW^-PjJ • 

We write f(c) in this way for comparison with the expression for 

f'(c): 

" w1-J-(
l!)-(-C)J"2{(2J-l)(;)c2(-c)J"2- (J-1H,. 

<is2 J   J J J 
(2.3)  f'U) =w,n2+ i,w1.J.(")-(-c)

J"2{(2J-l)(")c2(-0J-2-(j-l)p4} 

Then we may use Newton's method from a suitable starting point to find 

a stationary point c f(;) is evidently a real polynomial of odd 

degree 2n - 1 so it does have at least one real zero. We shall see 

later that even when n « 2 there may be more than one real zero. We 

could in principle find all the zeros of f with a conventional poly- 

nomial zero finding technique, but we would have to reject most of 

those zeros as irrelevant since they would be complex. 

In practice it appears that when Newton's method is started from 

; ■ -p-i/n, convergence occurs quickly to a stationary value which 
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arpears to be a reasonable candidate for a global minimum. This choice 

of starting point makes sense because, when we consider 

P(T) = (i-c0)
n+ eq(f) for infinitesimal perturbations eq, the solu- 

1     pl tion turns out to be z, -  5n--eq. =  . 

Even in the apparently simple case of finding the nearest n-tuole 

zero we encounter most of the characteristic difficulties of the more 

complicated cases of m-tuple zeros for m < r.. In the next sections 

we v.-ill explore these cases in detail. 
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3.  The Nearest Polynomial with a Fixed Double Zero 

In the present section we will solve the following problem: given 

a real polynomial 

P(T) =Tn+ Ip/-
j , 

j-1 J 

what is the least real perturbation 

q(t) - I  q,tn-j 
J-1 J 

such that p + q has a specified real double zero ?? We will measure 
2   T    "2 perturbations q by the familiar l9   norms Bql = q Wq = T w.q.. 

2        W       j-1 J J 

Our problem is to minimize Iql.. subject to the constraints that w 

p(T)+q(t) = (x-c) r(x) for some r of degree n-2. Using the nota- 

tions of the chapter on condition numbers, then, our problem is to find 

r   to minimize 

IP2r-plw = IW1/2P2r^W1/2pl2 . 

Recall that   P-   is the operator which multiplies polynomials of 
2 

degree   n-2   by   (T-C) . 

The solution of this linear least squares problem is 

Then 

r - (f\)W*p  . 

q« CP2{P|WP2}-
1
P2W-1)P 

Thus we can solve this problem by the usual least squares method. 

But when we do not specify ; in advance that method is inapplicable 
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since P„ now depends on ?. Therefore we will Took at a dual formula- 

tion of the problem that can easily be expanded when we allow c to 

vary. 
2 

So now when we minimize   Bqll     subject to   (p+q)(c) = 0   and w 

(p+q)'(^) =0 we will apply Lagrange multipliers according to the con- 

ventional formulation. Namely we will seek the stationary points of 

<*> = .Z/jtoj) + A0(p(c)+q(c)) +Ä1(p
,<C)+q,(c)) 

0     * 

with respect to changes in q.. We 
, J 

note that   q(?) =   j ^jC"""3   so 

3i|M)s^   and   lMlil\ (n-j)^-1.    Thus       j=1 

° = ^:=2wrt + Vn'J + Ai^^ nrn"J-l 

whence 

qj ■ ^CX0cn-J+A1(n.J)cn-J",> ,   j < n      a 
J 

nd       qr 2w„ ' n 

To determine AQ and A, we will use the constraints: 

0 = (p+q)(?) - p(c) + (-|-)ni {w
L(X0U

2)n"j + A1(n-j)c(;
2)n-J-1)}-^~ 

n-1 
0 « (p*q)'(c) - P'(c) + (4) [ r-(A0(n-J)c(c

2)n"J'1*A1(n-j)
2(c2)n-J-1). 

' j»l wj u ' 

The above may be written as a linear system of equations: 
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=1 w 

n-1 

j=l Wj 

I J=1WJ 

^-(n-jJCc2)^"1 

V^(n-j)V)n-J-l   x 

s  r r                           * 

\ 

* 2 

P(0 

I            J 
P'(0 

If we write 0|{ - J ^-(n-JJ^c
2)^ then 

0~ '  J 

rr rv -rr 

a2  -5a. 1 
V   ]  /     -Q-2 -^ -^   ,, UQ j 

' P(0 
. P'(C) . 

and 

= J. _in"j j = WJ V2^f (a2"(n'J)al)p(c)n(-CTl+{n-j)ao)P'^)> 

Then 

(3.1)  q(t) --yJ  I ^(^-(n-jJa^ptcJnC-G^Cn-jJaJp't?)} 
araQa2 j=l j ^ „.^„.j 

is the smallest perturbation moving p(x) to the manifold of polyno- 

mials having double zeros at c. The distance may be calculated to be 

fo2(p(Ü)fc-2g1P(g)(CP,(c))^o0(i;p'(c))
2} 

a0°2 " °! 

The foregoing calculation is invalid when c « o. In that c 

qn * "*V Vl " "VT and V °* 1 < J < n-2. 
,q,«svi(v/+Vp„)2. 

ase 

- 
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4-  The Nearest Polynomial with a Double Zero 

After the complicated expressions of the previous section, one 

woul'! expect worse from the following problem: given real p, find 

real q such that p + q has a real double zero r,    not fixed in 

advance, so that c may vary. The final expressions to be derived 

are surprisingly simple, however. 

We could solve this problem by differentiating with respect to z, 
2 

the final expression for llqll  of the previous section. It will be 
W 

more enlightening, however, to make a fresh start. The direct linear 

least squares solution method won't work now, and we must solve the 

problem with Lagrange multipliers. Thus we seek the stationary points 

of 
n    7 

v = I w.(q.T + Up+q)U) + Up+q)'(s) 
j=l J J    u        ' 

with respect to variations in q. and c- Then as before 
v 

but now, in addition, 

We exploit the constraint (p+q)'U) = 0 to see that 

Remarkably enough, either one of the Lagrange multipliers is identi- 

cally zero or else the unknown z is not only a double but a triple 

zero of p + q. It turns out that stationary points with (p+q)"(s) = 0 
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and X, f 0 are almost never minima; see section 9. Accepting that 

assertion for the time being, assume X,  = 0. Then 

qj  2w. A0C 
J 

From the constraint (p+q)(c) = 0, we find 

so 

and 

p«> ■ k I J-?"-J-?n-J 2 °j=iwJ 

,    Mil 
0   an 

qj   aQ w. 

q(t ) = -P(g) y _L cn-j n-j 
°0    j=l wj 

We still don't know c, but we can exploit the constraint 

(p+q)'U) = 0 to find 

j=l J a0   wj 

..nd 

(4.1) 
a V(^)(?2)n"j 

is the equation to be solved for ?. Apparently it could be writt: < 

as a polynomial equation of degree 3n-2. We will devote several sec- 

tions to discussions o* ways to solve this equation. Let it suffice 
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to say that when p is real, the equation always has a solution 

t,  = 0, and when n > 2 is even and p , f 0 it always has at least 

one other real solution as well. 

Once a solution z,   has been found, the corresponding distance is 

, IP(;)I _ LalsU ,5- 
s-0        o,o- 

There are usually several real solutions z,   and, surprisingly, most 

of them are local minima, rather than maxima or saddle points. It 

turns out that the maxima are usually the stationary points with 

(p+q)"(c) = 0. A difficult, unsolved problem is to find the z, 

corresponding to a global minimum of Bqll without having to find alj_ 

the solutions c 
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5.  The Nearest Polynomial with a Fixed m-tuple Zero 

Using the notation of Chapter I we will now show how to find the 

nearest polynomial with an m-tuple zero ?. We wish to minimize 

Iql = q*Wq subject to Ap + Aq = 0. w 
We may find the linear least squares solution directly. The 

vector W ' q of least Euclidean norm solving (AW ' )(W ' q) = -Äp 
1/2     -1/2 f f is just (W ' q) = (AW ' )'(-Ap), where   denotes pseudo inverse. 

Since A has more columns than rows, and the rows are linearly 

independent, 

(AW"1/2)+ = W 1/ZA*(Alf V)"1 , 

whence 

(5.1) J"lfl*f ALT' 1«. q = -W'lA*(AW',A*)"'Ap . 

Consequently 

■-Wli^l/2 Bqlw = ((Ap)*(AW"'A*)"'Ap) 

To compare this with our earlier results for real double zeros, we let 

m = 2   and recall that when   m = 2, 

*  i e 

e*D 

so 

AW"1A* 
eV'e      eVVe 1 

e*DW_1e     e*DW"1D*e 

We can derive expressions for the matrix elements in terms of the 
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" (tv-j)k,J?,n-j °ks .I^eT 
j=i    j 

Notice that this is a redefinition of the   a.    replacing the previous 

definition     I K J1  (c ) "J   which is not suitable for complex    c 

Then 

Therefore 

e*W"]e = a( 

-!■       1 ln*„\* e*DW'e =^ = (e*W"'D*e)* , 

e*DW~Ve = — 2"2 

and 

(AW'V)"1 l£j 
a0a2"al 

w?1 & 

oJp(c)|Z-2a1Re(p*(05P,(c))+on|CP'(c)r 1/? |q|(j = [J 3 2 0 jl/Z 
a0a2 * al 

w 

Apparently the major difference between the previous real case and the 

present complex case is that expressions like (e)  have been replaced 
2 

by expressions like |e| . The effect of this change will be that the 

equations to be solved for c» when it is not fixed in advance, will 

no longer be analytic. 
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6.  The Nearest Polynomial with an m-tuple Zero, No Longer Fixfcd 

Our problem appears similar to that in a previous section: mini- 

mize Hqll  subject to Ap + Aq = 0. The difference is that the z,   on 

which A and A depend is no longer fixed, and a linear least squares 

theory is no longer applicable. As we have just seen, if we do hold z, 

fixed, we can write q as a non-analytic function of z,.   Therefore 

we can find a directional derivative of q if we think of z,   as a 

function of a real parameter 6: z, =  C0 + 9C- Then gf-= C and if 

then 

v = q*Wq 

$~ = v = q*Wq 4 q*Wq = 2 Re (q*wq) 

since W is constant. At a stationary point of v we would require 

v = 0 for all q, including that particular one which makes q*Wq 

real. From that case we conclude that 
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0 = q*Wq 

is the condition for stationarity. 

But q is constrained in the values it may take. When we dif- 

ferentiate that constraint we find Ap + Aq + Aq = 0. Since 

(e*) * (•••Un"J)--*) a (•••(r«-J)cn"^"1C--0 s e*Dc, we conclude that 

Ä = AD?. Therefore the constraint on q and £ is (ADp + ADq)£ +Aq = 0. 

The idea of constrained optimization is that every pair (q,£) 

which satisfies the constraint should also satisfy the stationarity 

property, i.e., in the notation of the Lagrange multiplier theorem 

(Appendix 6), 

Bx - 0 «* y*x - 0 , 
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where 

and 

x - 

B = 

J*    s 

/■ • •» 

q 

v C J 

(A | ADp + ADq) 

(q*W i 0) . 

The Lagrange multiplier theorem just cited assures us that y may 

be written y = B*£ for some vector I   of Lagrange multipliers. For 

convenience we will write 

I = 
*0 n 

Vl 
Then 

(6.1) 
f Wq ] 

0 

A* 

. (ADp+ADq)* , 

But since Ap + Aq *  0 is the constraint, (ADp + ADq)*£ = 0 ■* 

((p+q)  (c))*Ä -i s 0 and we are therefore faced with the two possi- 

bilities we saw in the m = 2 case: either the last Lagrange multi- 

plier is zero, or the zero c has one higher multiplicity than we had 

planned. By examining the second derivative v in a subsequent sec- 

tion we will find that stationary points with extra multiplicity 

corresponding to minima of v always have l   , = C. Therefore we may 

always assume that i.   , = 0 at interesting stationary points. 

Continuing we find Wq = A*4 so q = W A*fc. Then the constraint 

implies (AW'VH ■ -Äp. Although AW"V is Hermitian positive 

definite and therefore invertible, we would find that I   ,    would not 
m-1 

come out to be zero except for certain special c's. These special 
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values of t,   must correspond to the stationary points of v. To find 

out what they are, we write a = ( n ) and 

,-1 

or 

Here 

Ap + (AW"'A*)( * ) = 0 

(Ap  AW_1A*Z)( 1 ) = 0 . 

Z = 

and it has the effect of removing the last column of AW" A*. The 

resulting homogeneous equation above obviously has a nontrivial solu- 

tion so the matrix is singular. Therefore 

(6.2) -1, 0 = det(Ap i AW"'A*Z) 

is the equation to be solved to find the c's corresponding to interest- 

ing stationary points of   v. 

To see what kind of equation it is, consider the case   m- 2: 

so 

AW"1A* = 

0 = det 

e*W-1e      e*W"Ve 

e*DW-1e     e*DW"1D*e 

' PU) 

. P'(C) 

e*W_1e 

e*DW°e 
* £<y(c) -OgP'(c) 

which we may write 
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(6.3) 
P(0 

jnifl=V,n-J 
j=1 wj  

j=l WJ 

This equation is evidently not that of an analytic function. We shall 

return to it later. Supposing for now that we have found an acceptable 

solution s for the equation above; we can then evaluate £ from 

AW'Vzt = -Äp 

in any of a variety of ways; the obvious way is to solve 

(Z*AW~Vz)£ = -Z*Äp . 

This equation is the same as 

,-1 ÄW"'Ä*Ä = -Äp 

where   A   is one dimension smaller than   A,    i.e.,   A = 

Then   q = W"]Än   and finally 

Ä 
e*D' ,m-l . 

Iql ■ (£*ÄW_1Ä*£)1/2 = ((Äp)*(ÄW1Ä*)"1(Äp))1/2 

For the case m * 2 that we considered previously, 

AW 'A* « a 

(6.4) 

and 

0 • 

£ '  -p(O/o0 , 

q » (-p(0/on)W"
1e , 

lqlw= IP(0|/^Q . 



7.  Computational Details: The Equation to Solve for the 

Nearest m-tuple Zero 

As we have seen, in order to find the nearest polynomial with a 

double zero, we must solve the equation 
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where 

h(r) = ajpdJ-o-gTp'd) = 0 

We will see that there are various ways of solving this equation for 

its zeros c when T and p are real, but for the more general com- 

plex case there do not seen to be many methods that work. We will 

usually solve this equation by means of Newton's method applied to two 

real equations in two >'eal unknowns. In this section we will provide 

the expressions necessary for Newton's method in the case of an m-tuple 

zero. 

The equation we have to solve is in this form: 

0 = det(Äp J AW"Vz) 

or, written out, 

P(C) 

P'(0 

e*W"1e e*W"1(Dm'2)*e 

p(m-l)(c)  e*D-"-lw-le . . . eVW"2)*« 

By multiplying rows and columns by powers of c and c* we can 
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rewrite the determinant without cha 

P(C) 

CP'(c) 

;00 
T10 

nging its value as 

J0,m-2 

IC-V-13(C)  o' m-1,0 

In this form it is obvious that the 

sf(0 

the first column will yield 

wm-l,m-2 

expansion in terms of minors from 

[P(C) 
■ (A -A ... (-l)m-lA  ) CP'(C) 

u  '        m-l I 

v*u . 
I cm-Vm-1](c) J 

Thus f may be expressed as a scalar product of (1) a vector u of 

analytic functions of z,   and (2) a vector v of functions depending 

only on a.,   and hence only on |c |. In fact the A. are real 

2 analytic functions of the real variable   |c |. 

The two real equations which we shall solve by Newton's method are 

Re f * 0   and   Im f - 0,   that is, 

(7.1) 

Now 

v*Reu = 0 , 

v* Im u « 0 . 

3Ref 3v 
3Kec      3Rec' v v3Re;'     tv '  ~fw^e u + v*Reu' 

(7.2a) = 2RecRe((v')*u) + Re(v*u') . 
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(7.2b) 

9Ref 
3 Im? 

9 Imf 
a Re? 

9 Imf 
8 Im? 

= 2 Im? Re((v')*u) - Im(v*u') , 

= 2 Re? Im((v')*u) + Im(v*u') , 

= 2 Im? Im((v')*u) + Re(v*u') . 

In general v* is a vector whose components are functions of the a.. 

which can in turn be written as functions of the a. defined earlier. 

Then ak = ]p>TVr 

Then 

and 

For the case m = 2 we have v* s (o,-an)    and u = _ ,/j.J. 1 u        (?D i?/j 

(v')*u =-!T{o?p(?)-o1?p
,(?)} 

v*u' = {a1p
,(?)-a0(?p'(?)-p"(?))} 

are the quantities required in the expressions for the partial deriva- 

tives. Those partial derivatives enable us to compute the Jacobian 

matrix required for Newton's method in two dimensions. 

The case for m = 3 is more complicated. In accordance with the 

previous formulation, 

L0' 

a10 °11 

G20 a21 

■ a^Oj-Og) - {a^-o^a^  = a^a^-a* 

h s a0a3'a0G2"ola2+al  ' 

Lz « aQa2 - o,  . 

For simplicity we will make a slight change: 
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(7.3)      v*u = V 

r i o oi 
0    1    0 

0   -1   1 

f 1    0   0 1 

0   1    0 

0   1    1 

2 2 

= v*u 

'P(C) 

CP'(C) 

, cp'u)+cV(c) . 

With   v*   and   u   thus redefined, 

(;?,)* = ■T^(aia4"02a3»-(oÖor4-cr2,'0Oa3"0l02J 5 TVVV^ 

(7.4) 

u' « 
f P(C) 

q>'(c) 

1 CZP"+3CP"+P' J 

It may be observed that expressions like ^I^-^O Evolving subtrac- 

tion of positive quantities will result in cancellation. Therefore we 

will rewrite those expressions. Let a typical term be 

ä - oaob - acad  . 

Then 

(I^k2ln-j)(I^lc2ln-k) 
wj wk 

wj wk 

I     I  ^-^-ic2|n":il^2In"k{(n-J>a(n-k>b- (n-J)C(n-k)d> 
j«l k-lwjwk 

This double sum has an entry for each position in an n by n square 

array, except for the diagonal entries which vanish. Therefore, we 

may add the i,j and j,i terms together and count only the terms 



:..    ,.-,-.:,-::   .:.    " v   ■.-.,.-..-,; v     :,,, 

^.-^V''^^''-^      .■-"V*'-    ■-;■'"'      :■ 

with   k > j: 
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n-1 

j=l wj k-j+l wk 

{•} s (n-j)a(n-k)b+(n-j)b(n-k)a-(n-j)c(n-k)d-(n-j)d(n-k)c . 

If we consider A to be a function of a real variable |c 

3A 
may define A' as 

n-1 

»IC2!" 
Then 

1 iJ.n-j-1 1 i_2,n-k, 

j-1 wj       k-j+1 wk 

then we 

The expression {•} in the equations above has the following values: 

for AQ, (n-j)(n-k)(k-j)2 ; 

for Ar (n-k+n-j)(k-j)2 ; 

for 22, (k-j)2 

We may use these expressions for &   and £' to compute v and 

v'. Using the expressions for u (7.3) and u' (7.4) we may solve 

the equations for the nearest polynomial with a triple zero (7.1). The 

partial derivatives (7.2) are used by Newton's method. 
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8•  The Second Derivative of IIqI! 

We have just seen which equation must be solved to find the sta- 

tionary points of llqll. Some of these points are local minima; others 

are maxima or saddle points. To investigate the nature of the sta- 

tionary points we now develop expressions for directional second 
2 

derivatives of    llqll  . w 

Suppose that r  = £Q + 8C for 9 real. Let the function to be 

minimized be v = q*Wq. As we have seen, 

dv 
de 

= v = 2Re(q*Wq) = 2 Re (A*Aq) . 

But the constraint   Ap + Aq = 0   implies   Aq = -(ADp + ADq)£    so 

v - -2 Re (£*(ADp + ADq)£).    Therefore 

v = -2ReU*(ÄDp + ADq)£ + £*(ÄDp + ÄDq)£ + Jl*ADqc}    . 

Differentiating   Wq = A*£   we find 

• .      • 
Wq = A*£ + A*£ = D*A*££* + A*£ . 

-1 
Differentiating (AW"'A*)A = -Ap reveals that 

ÄW"1A*£ + AW"1Ä*£ + AW"1A*i = -Ä 

or 

so 

and 

Then 

AW 'A*£ + AW 'A*£ + AW~'A*£ = -Ap 

ADW"1A*A;+AW"1D*A*£;* + AW"1A*£ = -ADp£ 

I  = . (AW"1A*)"1{ADp; + ADW"1A*£c + AW'1D*A*£;*} 

q = W"1D*A*£;* + W'1A*i 

v = Re($;2) + >lci2 . 

%  JfcT-J 



where 

Thus 

(8.1) 

<$> = 4q*WDW"1A*(AW"1A*)"1(ÄDp + ADq)  - 2£*(ÄD2p+AD2q)   , 

\l> = -2q*WDW_1D*Wq + 2(ADp + ADq)*(AW"1A*)"1 (ÄDp + ADq) 

■1 
+ 2q*WDW  'A*(AW"'A*)" AW"'D*Wq 'fl*^"^flu"'n*u 

v = (Re?   Imc) 
ip + Re 4>       -Im <f> 

K    — Im cf>      ^-Re<f> 

' Re I 

Im I 
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The eigenvalues of the matrix are ^+ |<{>|. If 4> > |<J>| then v 

is concave upward at £. If |<j>| < -i>   then v is concave downward. 

Other possibilities correspond to more complicated geometries. For 

instance if ty  >_ |$| at a stationary point, the point may be a minimum 

or a saddle point, depending on the third derivative. 

To compute the components comprising v note that 

and 

•1, n+l-i (n-k)!w 
(AW~'D*Wq). = I    (n-k)-T—. .x.?,' q.^.g 

.-1 n-1 

k+1 
wl 

2 

n-k-i+1 

q*WDW D*Wq = J (n-j)' 
j=l 

[!W 
J Vl 

4 

Special Cases for v 

There are two cases in which the previous expression for v may 

be simplified. The simplifications will become evident after we prove 

the 

Lemma. q*WDW"Vwq = q*WDW"1A*(AW"1A*)'1AW"1D*Wq if and only if 

m = n or I    , = 0. 
m- i 

iriftl"rYA **'• * * *' jMHk^m^tt&yWti 



Proof. (1) If m -  n then A is square and invertible so 
(AW'V)"1 - (A*)"1*"1. 

(2) If £m_. * 0 then A*v ■ D*A*£ has a unique solution 

vQ = 0, v1 =£0,...,vm_1 
sAm.2. Also x(v) = (A*v-D*A*£)*W"1(A*v-D*A*£) 

= 0. That means that the linear least squares problem 

W1/2A*u = W"1/2D*A*£ = W'1/2D*Wq 

has a solution u for which the residual x(u) must vanish; otherwise 

v would be a better solution. In fact, since the rows of A are 

linearly independent, u = v. But there is another expression for u: 

I u = (AW"V)"1AW"1D*Wq . 

Then x(u) - ° implies the desired result. 

J (3) Assume the hypothesis and that m < n; our goal is to snow 
■ -1/2 

that £m_1 -  0. If we write B = W 'A* then the hypothesis is i 
V 

(8.2) £*ADW'1/2(1-BB+)W"1/2D*A*£ = 0 . 

The theory of the pseudo-inverse implies that 1 -BB' is positive semi- 
definite for any B. Therefore 

I ') -BB+)W"1/?D*A*£ ■ 0 4 
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*s and D*A*£-A*v for v = BV1/2
D*A*£  sinr. 

, An u A £. Since m < n the rows of 
| AD are linearly independent so the equation £*AD . V*A has .  • 

solut,on v. By considering components we find that v . 0 and 

therefore that L   = v    k  - n i     *>        ° 
k  Vl' K ~  0-' m-2, and finally that 

Vl = °» as claimed. 
Q.E.D. 

3fa—* --   
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The next simplification lemma is an easy consequence of the 

foregoing. 

Lemma.    If   m = n   or   I m-1 0,    then 

with 

v = Re(<j)CZ)+4>|c|2 

4> = 2£*(AD2p + AD2q)   , 

* = 2(ÄDp + ADq)*(AW~1A*)"1(ÄDp + ADq) 

Proof. The assertion about ty    is a direct corollary of the 

previous lemma. To prove the assertion about <j> requires showing that 

£*(AD2p + AD2q) = q*WDW"1A*(AW"1A*)"1 (ADp + ADq). 

(1) If m = n then we must show that 

**_2(P
+q)(n)(0 = ^ADA'^ADp + ADq) 

or 

Vz= **ADA"'y .    y = o 
l 

But A" y = x where x represents (T-c)n_1/(n-l)!. Then 

ADx = 

f  0  ^ 

1   0 

so   £*ADx r £* 9   as we wished to show, 
m-t 

(2)    If   t   . = 0   we must show that 
m-1 

A;.2(p+q)(m)(0  - q*WDW"1A*(AW1A*)-1y(p+q)(m)(0 

or £* o = u*y for the u* of the previous lemma. The right hand m-Z ' 

side further reduces to u* , s I*  , as we sought to prove. m-I   m-t 

^z^^i SKSuK^mJm^SMm^äk^L^äx^Sm^ zt^»*a^Mm^m5!!i!^-..*&W?&.:. dsPS^"SBM 
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9.  The Last Lagrange Multiplier is Zero at a Minimum 

In a previous section we saw that there are two kinds of stationary 

points for the norm of the distance to the nearest polynomial with an 

m-tuple zero. Our object is to prove what we asserted then: 

Proposition. Let c represent a stationary point for llqD that 

is locally minimal with respect to complex perturbations. Then the 

last Lagrange multiplier l   , = 0. 

Proof. We know that all stationary points for Bqi have either 

I   , = 0 or (p+qrm^(0 ■ 0. Therefore we must show that if 

(p+qrm'U) = 0 and Bqfl is locally minimal then £ , = 0. To do 

this we will examine the expression for the second derivative obtained 

in the previous sections. 

The hypothesis, that ÄÖp + ADq = 0, implies that 

♦-- 2lJ_1(p+q)(mfl)(c) 

and 

i>  = - 2q*WD{W1 -W'1A*(AW"1A*)"1AW"1}D*Wq . 

A minimum requires that i|» >^ |$| or 

- q*WDW"1{W-A*(AW"1A*)"1A}W"Vwq > ji^ 11 (p+a)(m+1)k) I . 

The quantity in {•} on the left is 1 - BB+ where B * W"1/2A*. 

1 - BB  is positive semidefinite for any B, so the left hand side 

must be <_ 0. Since the right hand side is j> 0, both sides are exactly 

0, so 

q*WDW"Vwq = q*WDW"1A*(AW"1A*)"1AW"1D*Wq 

liiiliiifllfctflto iiii;~   -      fr nil *    i   ]i "^ k 
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and 

*£.1(p
+<i>(n+1,<c> = 0 

The first lemma of the last section tells us consequently that 

either £ , = 0, as claimed, or m = n. But if m = n, then 

(p+q)(m)(d = n! t  0 , 

contrary to the hypothesis that ÄDp + ADq = 0. This concludes the 

proof as originally worked out by W. Kahan [19]. 

Thus to find the nearest polynomial with a double zero it is only 

necessary to solve the simpler equations resulting from the assumption 

that the last Lagrange multiplier vanishes. In the case of a real poly- 

nomial, of course, it may happen that the nearest polynomial with a 

double zero is a complex polynomial with a complex double zero. 

The situation is much more complicated if given a real polynomial, 

we see the nearest real polynomial with a double zero. Then three 

possibilities may arise: the nearest such polynomial may have a real 

double zero, a real triple zero, or a conjuoate pair of complex double 

zeros. The last case is treated in the next chapter. That the second 

case may arise is illustrated by the following. 

Example. Consider the real cubic polynomial whose roots are 1.0 

and .224 ±.1741, Let the weights in the usual norm be 1, 1000, and 

10000. Then the nearest real polynomial with a double zero is the 

same as the nearest real polynomial with a triple zero, which is at 

; = .4235... . The second Lagranqe multiplier does not vanish 0' 

this ;. 

-•>» - -*VV "• 
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I 
t 

This example does not invalidate the proposition proved earlier 

in this section. If complex perturbations are allowed, then when 

double zeros are sought, t. - .4235 is a saddle point rather than a 

minimum. The nearest polynomials with double zeros turn out to have 

5 = .4245± .0993i, and this ? may be found by allowing the second 

Lagrange multiplier to vanish. 

The example above was found by accident while searching for some- 

thing else; see Chapter VI. As a practical matter it seems likely that 

such examples are quite rare, especially when normal weights are used. 

In all the other examples we have encountered, it was sufficient to find 

all the closest polynomials with double zeros and the closest with a 

complex conjugate pair of double zeros. 

aSfie-A^Sia  
.««A. JR.. IMM 
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10• Another Kind of Second Derivative 

Ir> tie previous sections we have discussed a directional second 

derivative for v = q*Wq which we compute by expressing v as a func- 

tion of s, the m-tuple 2ero. Another approach, which we could use 

numerically as a qualitative check on the previous method, is to compute 

a constrained Hessian matrix of partial second derivatives. In the 

next two sections we will define this idea and explain how such a 

matrix may be computed. Then the character of a stationary point may 

be construed from the signs of the eigenvalues of the constrained 

Hessian. 

Let f(x) = x*Hx be a scalar function of the vector x, Then 

how does f vary when x is constrained to the nullspace of a given 

linear operator L*? L* is m by n with m < n. 

We could choose a transformation P into a subspace of dimension 

n-m so that the space P*x satisfies the constraint. Then P*HP 

would be the constrained Hessian and its signature would determine the 

nature of the stationary point. 

As far as computational details go, we could let P be composed 

of columns from the QR factorization of L; see Figure III.l. P of 

course is not unique. We require L to be of full rank m; that is, 

none of the constraints are redundant. Then R is invertible and 

L*x = R*Q*x = R*H*x, so L*x = 0 • H*x = 0. Thus the columns of P 

span the space of x satisfying the constraint. 

The QR factorization uf a real rectangular matrix may be computed 

using the algorithm decompose in the Wilkinson-Reinsch compendium [35, 

pp. 113-114]. Q will be computed as a product of m orthogonal 

reflector matrices (I-ßuu*). As each is computed, the correspor,dinq 

r*^*^- JS. 
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 1  
I 
1 [Nl 

=          n H    !       P 
J 
1 
1 
i 
i 

-_ _ a 

0 

m n m 

L Q R 

} 

Figure III.l.    The QR factorization of L. 

I   V 

aALjK.a, .j»   . . v%u. jam,-: ■»*- 
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similarity may be performed stepwise on H. If a represents a column 

of H and b* a row, then 

(I - ßuu*)a = a- ß(u*a)u , 

b*(I -3uu*) = b*- ß(b*u)u* . 
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11. Computational Details: A Constrained Hessian for v 

We may apply the technique of the previous section to compute a 

Hessian matrix for v = q*Wq subject to the constraint Ap + Aq = 0. 

The constrained function to be minimized may be written 

T = q*Wq-ü*( Äp + Aq) 

with the Lagrange multipliers I*   treated a* independent of the varia^ 

bles q and z,.    Unfortunately the complex variables q appear in the 

equation non-analytically while the complex variable ; appears 

analytically in A and A. Therefore we will divide q, I*,    and c 

into real and imaginary parts to have two sets of constraint?.: 

;i and 

Re(Ap + Aq) = 0 

Im(Ap-f ^q) = 0 

Writing out the resulting expression for r in scalar form, 

m-1 
(k), r- I w.{(Req.r + (Imq.n + I  Re{X. (p+q)lK'(c)> 

j«l J    J      J    k«0  K 

where X. = p, - iu.. Then 

^S2w.Reqj + kIoRe(xk(nJ,k)^-k) 

^^w.lmq. - Vlm(xk(n,j.k);
n->k) 

sr 
3 Re; 

ar 
3 Im; 

I Re(x (P+q)
(k+1)(c)) , 

k«0  * 

m'l H\(^YM})U))  . 
k*0   * 



where (n.j.k) ■ (n-j)!/(n-j-k)!. The second den'vati ves are 

2 
= 2Wj 

32r 
OReq.)2   j  7^77 

32r     r „_r.    .   . v(k+2)( ■-2=lRe(K(p^d)U)) 32r 
(9ReOL      " "    (aim;)4 

2 

A a2r 
S Re q. 3 Im q. " 3 Re qi 3 Re q. (i»J>-™=2!J 

3 Imq. 3 Imq. ^ ^) 0 , 

2 

3Req. 3Rec 
J 

= I(nJ,k+l)Re(A1c
n-j-k-1) 

2 

a Imq 3 im 5 * 

2 
3T 

3Req7TTmT I(n,j,k+l)Im(A^
n-J-k-1) .    »L_. 

k 3 Imq. 3 Re; ' 

With these expressions for partial second derivatives we may con- 

struct the Hessian matrix H of the previous section. Then the second 

order change in r, for a small change 
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' Re «q" 
Im 5q 
Re C 
Im c   . 

6x 

will be 6x H6x. 

The constraints on 6x   should appear in the matrix l. Those 

constraints may be found by differentiating Re(Ap + Aq) and 

Im(Ap + Aq). Then 



99 

9 Re(Äp+Aq) _ 
3 Re q. 

9 Im(Äp+Aq) 
3 Re 9j 

Re(Au.) 
J 

Im(Au.) 

- 3 Im(Äp+Aq) 
3 Im q. 

J 

- 3 Re(Äp+Aq) 
3 Im q. 

where u. is the j'th column of the identity matrix. Also 

3 Re(Ap+Aq) 
3ReC 

3 Im(Ap+Aq) 
3Rec 

Re(ADp + ADq) 

Im(ADp + ADq) 

3 Im(Ap+Aq) 
3 Imc 

3 Re(Ap+Aq) 
3 Imc 

Then the matrix L will be 2n +2 by 2m and the matrix H will be 

2n + 2 by 2n + 2. 

It was necessary to resort to real arithmetic to deal with the 

non-analytic nature of the function F. If, however, we happen to be 

interested only in real changes in real q and £, then the dimen- 

sions corresponding to imaginary parts may be omitted, with considerable 

saving in computational effort to determine the signature of the con- 

strained H. 

tlTfjftririT'MfMriir-- ■'-"—^ **■■ 



CHAPTER IV 

FINDING THE NEAREST REAL POLYNOMIAL 

WITH A COMPLEX CONJUGATE PAIR OF m-TUPLE ZEROS 

1.  Introduction 

If we attempt to find the nearest polynomial with an m-tuple zero 

using the methods of the previous chapter, we sometimes find that one 

of the stationary points of llqll corresponds to a complex m-tuple 

zero e, even if the starting polynomial p is real. Then q turns 

out to be complex. It might be more reasonable to restrict q to be 

real if p is real. Then we would find that the nearest real poly- 

nomial might have a real m-tuple zero, a real m+1-tuple zero, or a 

conjugate pair of complex m-tuple zeros. 

In the present chapter we will develop the equations to be solved 

to find the nearest polynomial with a complex conjugate pair of m-tuple 

zeros. In that development we will take care to divide symbolically 

by Im e to eliminate real solutions 5 that we usually do not want. 

Then we will develop an expression for the second derivative and show 

that we may assume that the last Lagrange multiplier vanishes, just as 

in the previous chapter. 



'rr^^imm^^wm. 7ffJ^SÄ?4^ÄM!IW^Jft ,HSWW^f(H?PS^^!'* £ 
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2.  The Nearest Polynomial with a Complex Conjugate Pair 

of m-tuple Zeros 

Our goal is to minimize v = q*Wq subject to Ap + Aq = 0 and 

Äp + Äq = 0. We assume that the polynomial p is real, but the m-tuple 

zeros z,   and I   are complex with Im z,?0.    At first we will not 

require q or W to be real. 

The second constraint may be written Ap + Aq = 0 and the con- 

straints together imply A Im(q) = 0, since p is real. 

As in the previous chapter let z,   vary in a specified direction 

l    so z,  = sn + 6c, 9 real, and thus the directional derivative %■ 
0 do 

is I.    Then v = 2 Re(q*Wq). 

The result of differentiating the constraints is 

and 

(ADp + ADq)£ + Aq = 0 

(ADp + ADq)£ + Aq = 0 

Thus if ehe vector of infinitesimal changes is 

[ Re q 
Im 

* 
q 

Re 
• 

Im 
• 

then its constraint is   Cx * 0,   where 

C = 

Re A -Im A Re(ADp+ADq) -Im(ADp+ADo) 

Im A Re A Im(ADp+ADq) Re(ADp+ADq) 

Re A Im A Re(ADp+ADq) -Im(ADp+ADq) 

Im A -Re A ImfÄDp+ADq) Re(ADp+ADq) 

^.■.,<a„, ATtjÜSSJ», JWPBUMII 
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Then at a point where v is stationary with respect to changes in 

q and i   satisfying the constraint, Cx = 0 implies y*x = 0 where 

y* E ( Re(q*W)  -Im(q*W)  0  0 ) . 

The notation x, y, and C has been chosen to conform to that of the 

Lagrange multiplier theorem of Appendix 6, That theorem states that 

y* = { r*     s*  u*  v* )C 

■i for a vector of Lagrange multipliers (r* s* u* v*) of length 4m. 

* Therefore the components of y* are 

(2.1) Re(q*W) = (r+u)*Re A + (s+v)*Im A , 

(2.2) -Im(q*W) » (s-v)*Re A + (u-r)*Im A , 

(2.3) 
0 = r* Re a, + s* Im a, + u* Re a~ + v* Im a? , 

0 = - r* Im a, + s* Re a, - u* Im a« + v* Re a« , 

where a, = ÄDp + ADq and a- = ÄDp + ADq. 

Recall the formula q*W = S*A from the previous chapter. The 

analogous formula now is 

(2.4) q*W = H*ReA + £*ImA , 

where 

It  « (r+u)* + i(s-v)* , 

£| = (s+v)* + i(u-r)* . 

MM <&**j£^szs*~d&te.istii: 
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Then substituting into the constraints yields 

Äp + AW"1 (Re A)1^ + AW"1 (Im A)T*2 = 0 , 

(2.5) 

Äp + AW"1 (Re A)T£1 + AW'
1 (Im A)TH2 = 0 . 

This amounts x.o   4m real equations in 4m+ 2 real unknowns, counting 

Re c and Im 5. As in the previous chapter, there must be a way of 

using (2.3) to eliminate some of the unknowns in (2.4). 

Instead of pursuing ti:is most general case, let us digress briefly 

to see what simplifying assumptions might be helpful. 

Recall that for a Hermitian W, 

q*Wc = (Re q)T(Re W)(Re q) + (Im q)T(Re W)(Im q) 

- 2(Re q)T(Im W)(Im q) . 

If q is real, then q*Wq is independent of Im W so W might as 

well be taken to be real. From (2.2) and A(Im q) = 0, moreover, we 

deduce that 

- Im(q*W)(Im q) = 0 

= (Im q)T(Re W)(Im q) - (Re q)T(Im W)(Im q) . 

Consequently if W is real, then Im q = 0. 

Therefore the simplifying assumption we will make is that W and 

q are real. Of course, real solutions q are the ones most likely to 

be of interest when p is real. 

Returning to (2.2), with these assumptions we find 

0 = (s-v)*Re A + (u-r)*Im A 
t 
s-v 

u-r 

* 

B 

m--tfmdmm€r <in^P&'-- s* 
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where 
Re A 

Im A 

We shall see in a subsequent section that the rows of B are linearly 

independent. Therefore s = v and u = r, and (2.3) becomes 

(2.6) £*(ADp + ADq) = 0 

for i* -  2(r*-is*). (2.4) becomes 

(2.7) q*W = ReU*A) . 

(2.6) and (2.7) are the equations for stationarity of real q and 

complex c with respect to complex variations in q and £. (2.5) 

becomes 

(2.8) Ap + AW_1Re(A*Jl) - 0 , 

which is only 2m real equations in 2m+ 2 real unknowns. 

As in Chapter III we might hope to apply (2.6), which implies 

that either the last Lagrange multiplier vanishes or else the multi- 

plicity of c is m+1. In a subsequent section we shall see that we 

may reduce the dimension of (2.8) by one because the last Lagrange 

multiplier always vanishes at stationary points which are local minima. 

Consequently we may assume the last Lagrange multiplier vanishes 

when solving (2.8), so the problem becomes one of solving 2m real 

equations in 2m real unknowns. The equations are linear in the 2m - 2 

remaining Lagrange multipliers and very non-linear in Re c and Im c 

So as before we should eliminate the linear variables algebraically 

and solve for c numeHr^Hy. if ^ were held fixed temporarily and 
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symbolic Gaussian elimination were attempted on the remaining system 

of 2m linear equations in 2m - 2 unknowns, one would obtain two 

expressions involving Re r,   and Im r,   which would be required to 

vanish. These last two expressions would be set to zero and solved 

numerically for Re z,   and Im z,. 

We will leave the discussion of arbitrary m now and concentrate 

on the most interesting case, when m = 2. In this case (2.8) 

becomes much simpler. Then 

I = 

and 

so 

-X ' 

0 . 

e* ' 
e*D . 

f 

'  (Re e*)W_1(Re e) 

. (Im e*)W_1(Re e) 

-(Re e*)W_1(Im e) ] 

-(Im e*)W_1(Im e) 

-1 -1 
(Im e*D)W"'(Re e) -(Im e*D)W"'(Im e) 

[  (Re e*D)W"1(Re e) -(Re e*D)W"1(Im e) 1 

Re X 

Im X 

Re X 

Im X 

' Re p(0 " 

. Im p(0 . 

'Rep'(c) ' 

. Im p'(c) . 

Written out in detail for the usual W: 

n^2/w.       J(ReC
n'3wT—"'3 f lint c""3)'^ I(Recn'3)(I»Cn'JWjl 

I [(Re ;n-J)(Imcn"J)/w  I(Im cn"J)'/w. 
J J 

( S(n-j)(Re Cn_j)2/w. 

f Re X ) 

Im X 

' Re p(c) ' 

. Im P(C) . 

I(n-j)(Re C^Hlm;""3}/«. ) 

[ !(n-j)(Re cn_j)(Im cn"J)/w. [(>.-j)(Im ;n"J)2/w. 

' Re ;p'(0 ' 

. Im ;p'(t) . 

f Re X ] 

Im X 
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Write these last equations as 

AQA = xQ   and  A^ = x] 

for matrices A,,^, and vectors A. V and X]. We could solve 
the equation 

F(0 =A-1x0-A"1x1 =0 , 
or 

} (2.9) ?(?) s D1A+X0-60A|X1 = 0 , 

; where f denotes the adjoint and D. denotes the determinant det(A.); 
e.g. 

A"1 = (ß )~]A* 

„ In the equation £(;) = 0, we have avoided explicit inverses at 

i the cost of introducing extraneous solutions, by multiplying F by 

DJ),. The equation F(;) = 0 may be solved trivially by any real c, 

i since then the D vanish. Since only the complex solutions matter, 

j the real solutions will just be a nuisance that will distract numerical 

procedures. Therefore we will discuss divided differences in the next 

sedtion to see whether we can avoid the numerical difficulties. 



-:: .^fjv^r"-:^:'- ■*».■-*«!!'»:■ ^*7 *** 
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3.  Divided Differences for the Equations 

for a Complex Conjugate Double Zero 

The equation of the previous secti on 

^)E¥oVVt*i =° 
has every real c among its solutions. The reason for this state of 

affairs is that F, the equation we really wished to solve, was multi- 

plied by DQD,. Now 

D0 - {[(Re C
n-j)2/w.}{[(Im c""1)2^} 

- {[(Re cn'j)(Im ;n-j)/w..}2 . 

But Im 5 divides Im z,     for any k > 0, as may be simply verified 

by induction. Therefore we could write 

D0 ■ (Im c)2[{[(Re ^"V/WjHSU^2/*.} - {[(Re Cn"J)Vj/wJ}] 

where the standard divided difference symbol A means 

Im ck 

A. s L- ^ = a polynomial in Im c and Re ? . 

We could similarly factor out (Im c)  from D,. It turns out, more- 

over, that for real polynomials p, Im c divides Im(p(c)) and 

ImUp'U)). We may denote these divided differences by A  and A ,. 
, p CP 

Then   AIx«    is 

f (Im c)2      0 
'*Un-Aj ^Vj^^^lfRepf;)) 
l-IfVjRe^J/Wj    [(Re cn-j)2/w. I        A 

J       p  ' 

I" all. then, (i„ ;)
4 divides the upper e,enent Qf ^ ^^ . ^ 

.»< (I. O3 divides the lower eWt. Have we found all possible" ° 



WSI^^^AäW'.'JW'''
1
'*?.!!' • 

Im c factors? If we have, the equation will no longer be solved by 

every real c. 

To answer the question, let c approach a real value. Then as 

Im ; •*■ 0, 

^|uk) = k^ Ap-£p(0-p'(0 , 

ACP.^^(CP'(C)) • cp"k) + p'k) . 

Then when we substitute this information in the equation 

108 

i 
(3.1) F(0 

. F2(5) . 

f (Im 0 

(Im c); 
F'(C) , 

we find that, for instance, 

:V(0       o ? 
— * (o^oya^pU) -(ooa3-01o2)cp

,(c) + (aoa2-op(cp"(?)+P
,(d) 

The right hand side is just the equation (III.7.1) to be solved to 

find the nearest polynomial with a real triple zero £• 

Naively we might expect that the limiting case of equation (3.1), 

an equation for two complex conjugate double zeros, would look like 

the equation for one real quadruple zero, rather than a triple zero. 

That such is not the case shows how unreliable intuition can be when 

applied to these problems! 

We may safely conclude, however, that all factors of Im c have 

been removed from (3.1). Ideally, the equation for a real triple zero 

should also be removed by algebraic means. That removal is such a 

formidable prospect that it seems more attractive just to numerically 
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prevent convergence to those real £'s. Therefore we will solve 

F(c) = 0 with F defined as in (3.1), with the Im c factors removed 

symbolically but with convergence to the real triple zeros prevented 

numerically. The reader interested in the details of computing F 

may find them in the next few sections. 

In the previous chapter we saw that the nearest real polynomial 

with a triple zero may sometimes also be the nearest real polynomial 

with a double zero. By numerically deflating the solutions for triple 

zeros we might be missing some interesting information, but experience 

has shown that, if the solutions for doutle zeros are unsatisfactory, 

then the triple zeros are much more efficiently found by solving the 

equations for triple zeros rather than allowing the solutions of the 

equations for complex conjugate pairs to coalesce. 

'u^»-*'-^-J' - - "~** ■**>-1»aiHMBl 
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4.  Computational Details: The Equations to Solve 

for a Complex Conjugate Pair of Double Zeros 

We aim to find zeros of the function 
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F(0 
f (Im C)4 0 

0 (Im 0: (VoVViV 

Therefore define 

and 

for   i =0, 1, 

Now 

' t. * 
i 

b. 

Of = yum C)' 

f V(Im O2       0 

1/Im c J 
Afx. 

D0 ■ I(«te ^/w.^./w. - (J(Re Cn-j)in../w.)2 

and   D1    is the same, except    (n-j)/w.    replaces    1 
V 

may be rewritten 
/Wj. The formula 

(4.1) » T 1  y _l_,_4|n-k.2 
Jsl J k=j+ wk      k"J 

The formulas for the derivatives are 

,4,n-k-l It aD0 2n'2 1    n_1    i 

n-1 

wn ji,  Wj  VjVj 

 _ _ .^*_..._. 



i 

in 

n-2 T    n-1    !   _      1_4,n-k-lr,/„_1,xTH,r A.   . + kl2A? J 

(«•zb> alii   'm  jii»jH+iwk 

In the notati^ of Appendix 4, 

,r _ 3*1,     .m _ 3Ak ttk     4m . 

* Now 

1 /r.2  /... \Da n _ (Y(Re c "J 

U     n j  j 

and 

< 4o_ - (^ ./w.)Re p- ♦ (Re P>I(2VjCj)/wJ 
: 3 Rec     VL n-j    J 

(4.3) 

- (£(Re Cn"j)Vj)(n5TV 

-U(Recn-JCj + (n-j)VjRe;t1"J"1)/W3; 
r 

Likewise 

'"■JA. ,/wjA^,  . 

* -ÜL-. (Y(n-j)^ i/w.)ReUp"+P') 
* 9Rec       -     J    n-j    J -3 

(4-*) ♦ Re(cP')I^-J)(2V/n-3)/WJ " ^""^ '"'V^T^HS'* 

;P 

r'ffl "ItiiiimMiiifiif-i MiMiiiiiMiiiii™fPS--3^--^^Wjr: 
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\ 

at 
The expression for ^^ may be obtained similarly by substi- 

tuting (n-j)/Wj for 1/w  and cp' for p in the expression for 

9 Im?" 

Continuing in the same fashion, 

bQ = - (lRecn"ji /w )Re p + (J(Re cn"J)2/w.)A , 
J j J p 

b, - - (I(n-j)Re ^"Vj/wjRe Cp- ♦ (J(n-j)(Re ^"V/w.)* , , 
9bQ . J ^P 

TRTC 
= " (IRe^"JVj/wj)ReP' 

* . rPc n^V/Do rn~J*r 

(4 5)     - (Re p)I(Re fhl. ♦ (n-j)Vj n.«»'")/^ 
._.   n_-; o    9A_ 

3b, 
+ ([(Re Cn-j)2/w )^-+ i T2(n-j)Re c

n"J Re^'Vw. 

HFc= ([Re?
n-jAn_./Wj)Imp' 

- (Re p)[(Re c""3^ - (n-J)Vj Im«'l"j'1)/*«j 

j ♦ ([(Re ^'V/Wj)^ - ip[2(n-j)Re cn_J' Im^/w. . 

t The formulas for the derivatives of b, can be obtained by the usual 

substitutions. 

' The formulas in this section .-nay be used to implement Newton's 

method to solve the two real equations F.(0 = 0 and F?(i;) = 0 for 

their two real unknowns Re c and Im c. 
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5•  The Rows of B are Linearly Independent 

Corresponding to the complex operator A of previous chapters, 

A = 

e* 

e*D 

*nm~] 
e*D' 

it was necessary in Section 2 to define the real operator B which 

maps Rn to R2m by 

B = 
Re A 

Im A 

Re e* 

Re e*D' 

Im e* 

Im e*D' 

m-1 

,m-l 

> 2m 

Proposition. If Im z, f  0 then the rows of B are linearly 

independent. 

Corollary. BW" B  is invertible. 

Proof of Proposition. We will show that B has full rank 2m by 

exhibiting a set of real vectors {q. , 0<_k<_m-l}, such that 

<Bqkr>-< 

ffl ^ 
x 
X 
X 
0 

i x 
! x 

' 0 ^ 
1 
x 
X 
0 
0 
x 

I * i 

m 

m 

:jv^ .-kaa_*'' 



;;->;.« ■ >ii~:-y-r-w?:;;■";. ■ :■.■'- .^tp^gf^M| 

and a set    {q^}    Such thflt 
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In other words, 

{BW 

M 

and 
^ . J = k , 

I 4 

8? 

qkm  (Q) =1 
^ . J = k . 

The existence of 2m such real 

pendence of the rows of B. 

k-1 , 

Vs fs equivalent to the linear i nde- 

Clearly, for either set of V 

VT> ■ (T-a)k(T-ä)ks(T) 

*' some real    s(T)    w,th   s(a) , Q , . Q   , 

"U<M.    ^the^ore   q (k)(a) "       (a)"°   *' 

office   to let   SM     1/A ^ U WOuld 

° ,et   S(T) = V*.    But what if   o    is complex? 
It turns out that s(T) = 9T+ 

we must examine q (k)(a). f 
for    (T-ä)k: 

Trst form an expressi on 

('-«'■(T..♦«!.„,'. j^Wj* z..)M , 

IfflSBBMBi FWfiiilfrrn 5iTfii- "T ■^Xk^l^.-.jW^MM 



by the binomial theorem. 

Then 

(T-CX) (i-a) I (k)(x-a)k+j(2i Ima)k-j 

j=0 J 

and 
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jLK(T.0)k<T.«)'<) m y    (5)ÄTH»)k+J-p(21 I»«)k-J 
dxr j=max(0,r-k) J u J r;" 

and 

—-{(T-O) (T-5) } 
dtr 

fü . r < k , 

t=a lk!(2Ima)k-ik , r = k 

We may now invoke Leibniz' rule, 

to find 

Dk(ps) ■ I  (k)(Dk-jp)(Dks) , 
0=0 J 

i 

±A(x-a)k(x-ä)ks(x)} 
dt 

(k), 

k!(2Ima)k.iks(a) . 
T=a 

va 

This expression for q. v '(a) shows that it is only necessary to choose 

an appropriate real s of degree at most 1 to get any desired complex 

lue of q. v '(a). If u> is the desired complex value of s(a) then 

Re s(a) = Re(6a + n) = eRea + n=Reu); 

Im s(a) = 9 Im a = Im w . 

Thus 6 = Im uj/Im a, n = Re u> - 6 Re a, so we can construct s and 

therefore each q.  and q^. So the rows of B are linearly inde- 

pendent as claimed. 

■**&• -3WS. AM 
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6•  The Last Lagrange Multiplier is Zero 

Section 2 demonstrates that there are two kinds of stationary 

points for v = q*Wq, q real, namely those for which the last 

Lagrange multiplier vanishes, and those for which the multiplicity is 

greater than anticipated, so that fp+q)  (c) -  0. 

Proposition. Let x,   represent a stationary point for llqll that 

is locally minimal with respect to complex perturbations of ?, Then 

the last Lagrange multiplier I   , = 0. 

Proof. Since v = q*Wq, v = 2Re(q*Wq). But Wq = Re(A*£) for 

a complex vector £ of Lagrange multipliers. Therefore 

v = 2 Re (£*Aq) = -i Re U*(ADp + ADq)£) 

because of the constraint   Ap + Ac = 0.    Then 

(6.1)       v = -2Re{£*(ÄDp+ADq);^ !i*(ÄD2p+AD2q)?2 + Jl*ADqc}    . 

Assume now that we are at one of the stationary points with ÄDp + ADq = 0. 

Our next task is to obtain expressions for q and I.    Differentiating 

the constraint reveals that 

(ADp + ADq); + Aq = 0 ,   so  Aq = 0 , 

while differentiating the stationarity condition Wq a A*£ yields 

Wq = Re{A*£ + D*A*U) 

so 

Aq = AW"1 Re {A*i +D*A*£;} = 0 

■^^^ajmi-MmM 
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deduce that 

where 

AW"1 Re (A*£) = - AW"1 Re (D*A*fc£) » 

BW_1BT 
Re I 

Im £ 

,-1 
= -BRe(W~'D*A*ü) , 

B = 
f Re Al 

Im A 

as in previous sections. Since the rows of B are linearly indepen- 

dent, BW" B  is positive definite and 

(6.2) 

Then 

and 

(6.3) 

Re £ 

Im i 
=  - (BW'1BT)~1BRe(W'1D*A*Ü) , 

q = W"1 Re (A*£ + D*A*U) . 

Re(A*£) = - BT(BW~1BT)"1BRe(W"1D*A*Jl£) 

q = W"1(W-BT(BW"1BT)"1B)W"1D*Re(A*ü) 

Recall that 

= -2ReU*(AD2p + AD2q)c2) - 2 Re U*ADq£) 

We may write 

(6.4) ReU*ADqc) = Re(^*A)DW'1 (W - BT(BW"1BT)"1B)W'1D* Re (An!) . 

The matrix (W - B (BW" B )" B) is positive semidefinite so both sides 

are real and >_ 0. 

HU «MM-*.«»--^«_ i-.-,..^  ■ --*r *»*. -"w^-- .TTiM 
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As in the previous chapter we may write 

v = -2(Re i Im i) 
'Re 4>+ (Reb)TM(Reb)       -Im*+ (Im b)TM(Re b)' 

.-Im** (Imb)TM(Reb)     -Re <f> + (Imb)TM(Im b), 

Re? 

(Im? 

where 

b = D*A*£ , 

M = W"1/2(1-(W"1/2B)[(W'1/2B)T(W"1/2B)]_1(W"1/2B)T)W'1/2  , 

and    <f> = £*(AD2p +AD2q)  . 

Then a tedious but straightforward argument paralleling that of 

Section III.9 shows that   v _> 0   for all    r,    implies   4» = 0. 

Alternatively we may recognize that for a suitable   ?, 

v = -2{|£*(ÄD2p+AD?q)c2| + Re(£*ADq?)} 

At a local minimum   v >_ 0   for all    ?;    recall  (6.4) to see that 

£*(AD2p+AD2q) = 0   and also   £*ADq = 0. 

Thus by either argument, at a stationary point which is also a 

minimum,    £    , = 0   or    (p+q) (?) = 0.    In the first case we are 

finished.    The second case implies that   n >_ 2(m+2). 

Furthermore,    £*ADq - 0   and (6.3) tell us that 

Re(£*A)DW"1{W-BT(BW"1BT)"1B}W"1D*Re(An) = 0 . 

Since the matrix in brackets is positive senidefinite, 

and 

(W-BT(BW"1BT)"1B}W"1D*Re(An) = 0 

Re(£*A)D = S'B 

' ^ 

f^^tom'*ltlff'"&t-i "-I *ad&t' ■ >'- ̂ ±**LJS/,^IS*Äi 
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where 

so s  is real 

sT = Re(£*A)DW"1BT(BW"1BT)"1 

Our next goal is to construct a matrix like B, but augmented by 

two more rows, from which we can conclude the result. Partition I* 

and s  as follows: 

a* = (£,x)* , 

sT = (y U e v)T . 

A, \i,    and   9   are scalars.    Then 

Re(£*A) = (Re £)TReA - (Im H)TImA 

and 

Re(A*A)D = (Re£   Re X   -Iml   -ImX) 
( Re AD 1 

Im AD 

Finally let 

e*D 

so 
e* 

A •  ( \  ) 

and 

Then 

may be written 

AD -  ( g*^ )   . 

Re(£*A)D - s 8 ■ 0 

m J^MSLJMl VJIMR 
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(n, Re £T-uT, Re A, 6, -Im A -vT, -Im A) 

Re e* 

Re A 

Re e*D' 

Im e* 

Im A 

Im e*D' 

,m 

,m 

The matrix on the right is just a B matrix, but for m augmented 

by 1. Since n >_ 2(m+2), the augmented matrix has at most n rows 

which are linearly independent. Consequently £ = u-iv, 6 = 0, 

u = 0, and A = 0. But this A is just the last Lagrange multiplier 

£ ,, concluding the proof. 

We learned in the previous chapter that to find the nearest real 

polynomial with a real double zero, it might be necessary to solve 

equations for a real double zero and equations for a real triple zero. 

But in this chapter we have the more satisfactory result that to find 

the nearest real polynomial with a complex conjugate pair of double 

zeros, we need solve only one set of equations; it is not necessary to 

look for the nearest real polynomial with a complex conjugate pair of 

triple zeros. 

Sa^S^^äLML 



CHAPTER V 

FINDING THE NEAREST POLYNOMIAL WITH MORE THAN ONE MULTIPLE ZERO 

1.  Introduction 

Previous chapters have exhibited the equations to be solved to 

find the nearest polynomial with one multiple zero or one pair of com- 

plex conjugate multiple zeros. Now we turn to the more general problem 

of finding the nearest polynomial with a specified configuration of 

multiple zeros. We shall see that despite some complications the 

theory bears a family resemblance to what has gone before. We shall 

find that, in the complex case, the equations to be solved for the 

multiple zeroi assume forms simpler than what might have been expected, 

because certain Lagrange multipliers vanish. However there is some 

doubt, in general, as to which of these simpler equations should be 

solved for the multiple zeros. Fortunately when all the zeros are 

double the equations to solve are fairly obvious. 

Unfortunately, just as in the case of the complex conjugate 

multiple zeros, the equations we solve become much more complicated 

when divided differences are taken in order to inhibit unwanted coales- 

cence of the multiple zeros. These equations are given in full detail 

for the case of several double zeros, and especially for the case of 

two double zeros. 
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2.  The Nearest Polynomial with Several Multiple Zeros 

Given a complex polynomial p(x) we seek the nearest polynomial 

(p+q)(r) such that p + q has k complex multiple zeros ?.. Each 

C- has a multiplicity m. > 2, and J m. < n. Corresponding to the 

operator A of previous chapters we define A. by 
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Ai 

ei  is the evaluation functional for 

is defined analogously with e.* replaci 
Cr The m. by n+1 operator A. 

n9 e. . Then the equation 

Ä^.p + A.q = 0 

expresses the constraint that p + q has an 

We also define the operator 
m-tuple zero r 

S « 

fA, 

KJ 
K 

which may be seen to be somewhat like 

it will be used for similar purposes. 
the B of the previ ous chapter; 

Proposition,  if r    4  ,      w.    . t   . 
      Ci ' -j when ' t  J then the 

linearly independent. 
rows of S a re 

^^^a^Lj^M^ ^iWfe:, 
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Corollary. SW" S* is invertible. 

Proof of Proposition. We will show that S has full rank by 

displaying £m. linearly independent vectors 

Scln - »  ! £ J i k» ° £ r £ m,--l < 
j »• J 

The q.   are defined by their corresponding polynomials as 

m. 
q, JT) ■ (r-54)rn (T-C.) ' 'J.r 

1« 

and the conclusion follows immediately. 

Our goal is to minimize v = q*Wq subject to Ä.p + A.q = 0, 

1 < i <_ k. Let the raised dot (*) represent differentiation in a 

particular direction of a specific 5.: £.(e) = ?.(0)+e£.. Then 
J     J J J 

as usual 

v  =^=2Re(q*Wq) . 

Differentiate the j'th constraint to find 

(AjDp + AjDq)Cj +Ajq - 0  , 

but differentiate the other   k-1    constraints to find 

A.q * 0 ,    i f j  , 

because A. is independent of c-. 

By applying the Lagrange multiplier theorem of Appendix 6 at a 

stationary point, discover in the usual way that 

(2.1) q*W = V t.*A. = £*S 
? 1 1 

:UÄ2e> "r~  "^^.■flP^WC^Wf JP ■* 
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There are k vectors JL* of Lagrange multipliers and I*   is their 

concatenation. Furthermore 

(2.2) *j*(ÄjDp + AjDq) = 0 

for 1 < j < k. 

Thus at a stationary point, for each j, either its last Lagrange 

multiplier I*.     _, vanishes or £. has multiplicity one greater than 

expected. In the next section we will see how the techniques of pre- 

vious chapters can be applied to show that the minima of v always 

have l.  m T = 0. 

Now when we substitute in the constraints we find 

AjP + A-WVl ■ 0 ,  1 < 1 < k , 

or 

(2.3) \*t. = SW 'SH Sp 

.-1, Since the rows of S are linearly independent, SW S* is positive 

definite symmetric and therefore invertible. But we may assume that 

k elements of i   vanish, so we have £m. linear equations in 

(£m.) - k unknowns. The attempt to solve such a system by Gaussian 

elimination yields k expressions which must vanish. The corres- 

ponding k non-linear equations in the c. may in principle be solved 

for the &.. In subsequent sections we will display equations for the 

case that all m. » 2. 

ufejliv ä^fa^waiäfaiii^^fr- jfcffif 
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3.  The Last Lagrange Multipliers are Zero 

From the previous section we may deduce that 

v = 2 Re(q*Wq) = 2 Re(£*Sq) = -2 Re(£*(A.Dp+A.Dq)c.) . 
J   J      J      J 

When v is stationary, then for each j, either its last Lagrange 

multiplier vanishes or the multiplicity of £. is one greater than 
J 

expected. 

Proposition. Assume i^j ■* c. fz,  . Then at a stationary poi 

at which v is minimal with respect to complex perturbations in r,., 
J 

the last Lagrange multiplier in i.    vanishes. 
J 

Proof.    Continue to differentiate the expression for   v   above: 

v = -2 Re{£*(Ä.Dp+A DqjL+Ä^Ä D2p+A.D2q)^ + i*A.D^>    • JJ      J      J     J   J        J        J     J J 

Assume that Ä.Dp + A.Dq = 0 at a stationary point, which simplifies 
J       J 

the expression for v above. Furthermore the assumption means that 

£m. < n because k ^2 and all c.'s are distinct. 

From (2.1), 

q - W'Vl-WVl , 

and from the constraint and the assumption, 

Sq * 0 . 

nt 

Therefore 

But 

so 

SW*Vi * - SW^S** . 

§** = i'fy.  = D*A*ljIJ , 
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I = - (sw'VrWW*.!. , 
J J J 

q = WVAJYj " W"1s*(SW_ls*)"1SW1D*A*£.c.  , 
J    J     J 

and 

£*A.Dq? = Ä*A.DW"1/2{1-(W"1/2S*)(W"1/2S*)+}W"1/2D*A*£.|M2  . 

t 
(1-MM ) is positive semidefinite for any M so 

v = - 2 ReU*(Ä.D2p + A.D2q)£2} 
J   J J        J 

- 2(£*A.DW"1/2{1-Cr1/2S*)(W"1/2S*)+}W"1/2D*A*£.)|M2 . 

If v is to have a local minimum then v >_ 0 for any £., yet by apt 

choice of I.   we may arrange for both terms to be real and negative, 

so they both must vanish: 

(nu-+l) 
A}(p+q) J  (Cj) = 0 

and 

(3.1)        £*A.DW"1/2{1 - (W"1/2S*)(W'1/2S*)f} = 0 . 
J J 

From this point we follow the argument of 111.8 to show that   \*.t 

the last element of   t*.,    vanishes.    From (3.1) we find 
w 

£*A.D = v*S 
J    J 

where v* « £JAJ.DW
_1/2((W"1/2S*)+)*. Now partition v* conformally 

wi th S so 

v*S = yv*A, . 

Introduce an augmented operator 

aüftrwifriiin'i n f* - -"*■ -*""• ^- 
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S = 

A. 
J mi 

e*D J 

J 
>   Ini.+l 

Then we may rewrite the equation 

as 

v*S-£*A,D = 0 

(3.2) (v * .., y*   y* y*    ... y*)§ = 0 

where v> = (vt 0) - (0 £*). Since £m. < n, the rows of S are 
J       J J ' 

linearly independent, so the vector in (3.2) vanishes. In particular, 

the last element of v>, which is -At, the last Lagrange multipler, 

vanishes as claimed, completing the proof. 

As in Chapter III, the present result applies when complex pertur- 

bations are considered. In the case of real perturbations of a real 

polynomial, the result is known to be false in general for k = 1 and 

counterexamples could probably be constructed for larger k. It seems 

likely, however, that in most practical problems satisfactory results 

may be obtained by assuming that the last Lagrange multipliers vanish. 
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f. 

4.      Equations for k Real Double Zeros 

The nearest polynomial with   k   real double zeros is of interest 

in studying polynomials like Wilkinson's (Chapter X).    The formulas 

we shall derive have not been treated by means of divided differences. 

Section 6 contains formulas for the case   k = 2   derived with the aid 

of divided differences. 

The equation we wish to solve is (2.3); 

SW'VS = - Sp . 

We know that the last elements vanish for each t., a subvector of £. 

Therefore we may define the vector A by letting A. be the first 

element of £.. Then 

S*2 ■ lAn. = lA.e. . 

Recall that et is the evaluation functional for £.. 

Having eliminated some of the unknowns we are left with 2k equa- 

tions in the 2k variables A-pAp,... .Ak and c-i.U 5k- Since 

the equations are linear in the A.'s we can easily eliminate them, 

leaving k non-linear equations in the c's. To do this divide the 

equation (2.3) into two pieces: 

W'Vr - V 
and 

(4.1) S^SJA s * V 

where 

i-y***-arii iHimr—ff~" *~ .«-■«•>. 
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and S, = e*D 

To simplify matters later multiply (4.1) by the matrix 

Z = diag(s,,...,;.). Then if we define 

T s c u"'c* 
'0  0  0 ' 

T, = ZS^S* , 

v0 = V = 

'-, ■ zsrp = 

' P(c7) ' 
•      ♦ 

where 

(Tn),. = etW'V.  and  (T.).. = t.e*DW_1e. 
'OMj  ci" cj l'ij '-rr 

then we may eliminate A and try to find zeros of the function 

(4.2) F(z) =A0-A1 =T-
1v0-T-1v1 , 

where z =(?,,...,;.) and F are k-vectors. 

To keep the following computational details simple, we restrict 

attention to real ;.. We wish to solve (4.2) by Newton's method; to 

get the necessary derivatives let (*) represent •£-   and recall that 

(M"1) = - M^MM"1 for invertible matrices M. Thus 

(4.3)      F(z) MT;\ + T^v0 ~ (TiS -V;1 



Now 
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f0 " V'\* + S^Sg 
0 f 

e*DW_1
e. 

J                    i 

0 . 

+ 0   e*W~Ve.    0 1 J 

The non-zero entries are contained in the j' 

respectively.    Continuing, 
j'th row and the j'th col umn 

Vo= ejDW_1 
0 

0 

(4.4) I 

j'th entry non-zero 

+ ViV>«, • 

'      0 

• 

Vl = (e? + Cse*D)W"7 
j     j j 

6 

0 
+ A1>jZS1W

1D*e. 

.     o     . 

use of formulas (4.4) in (4.3 ) we may c omDute th« -i'+k «.. 
Jacobian matrix appropriate for 

tions of (4.2). 

In terms of our familiar diagonal norms, 

use with Newton's method to find solu- 

(Tl>1J-»n-r)(CicJ)n-r/wr, 



(Wj = p0.1?*n»-r)(?J.5?)n-r-l/wr 

+ Vj«,J<-r)(t1tJJn-M/Wp. 

<¥l>i^1.j?iI(n-r)2(ci.Cj)"-'-'/wr.      1*J. 

+ A,,jC1.I(n-r)2(c.!j)"--'/wr. 
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5•  Deflation for Several Double Zeros 

When solving equation (4.2) for polynomials of degrees only 

modestly larger than 2k, one often finds that zeros of F are quite 

abundant. In order to prevent reconvergence to zeros already found, 

some sort of deflation is required. 

Unless further steps are taken, moreover, convergence will occur 

to solutions in which some of the ostensibly distinct z,.    have coalesced. 

This behavior must also be suppressed; we shall do so numerically. 

A workable approach is to find the zeros of G, rather than F, 

where 

G(z) = F(z)/A 

A = A^2 , 

A, E n (c-c )2 
1  •   i r i>r 

for elements z,.    and L,     of z, and 
l     r 

A2 E n nz-z
sn* 

s 

for known zeros z  of F. 

If we let (') 
d?j 

then 

•    • 
G = F/A - (A/A)G 

We know that 

and we find that 

(A/A) = (^/A,)* (A2/A2) 

m 
(.%-!?) 

\    -  2A I   l/(r -■ ) ,    }    = 2A, V -J-i- . 
I    I :J;   J  1       2    <-. r ... -S„2 s »z-z 



In the last expression, the divided difference A. = (c]-C«)/(c,-c?) 

is a polynomial in c-j and ;2 for any i > 0. The corresponding 
result for 6, is 

To apply Newton's method the derivatives will be required; assume £. 

and c2 
are rea^: 

~ n-2 , n-1 :     9 g  . 9A, . 

Since ^ and ?2 are symmetric in (6.1), ~ may be obtained by 

2 36n interchanging the roles of ?. and c? in (6.2). Similarly ~ 

may be obtained by substituting (n-j)/w. for 1/w. and (n-k)/w. 

•1 

for l/wk. 

When finding zeros we will need to compute a  th *• 
of fh.  *   * 0» the f""st element 
Of the Vector  T'v    anH a +u  x. T

0V 
and V the f,rSt element of the vector T+v 

Then II' 

(6-3) §o5 V<V<=2> • I (cp"-\   ./w. 



Now 

.n-j 
A 

P>n-J 
4JP(^)-^p(c2) 

5rC2 

Vn-j    1« a polynomial in   ,,    and   C,;    the details of its construe 

tion are given in Appendix 5.    Similarly 

<«•«> ti-"V«V52)-c1lc2l
2nlVj)(4*)^41   /w j-1     *    P',n-j-l/wj 

where 

-n-J„, .^VfC^-cyVfc.) 
P .n-j 

The derivatives of the §'s will also be 

crc2 

are 
needed,    in the real case they 

(6.5) 

96° - 1 !Vp  r n-i-1  9*n n . 

! '  d?i    P ,n-j-l//wj 
39, 

Z     J 

We could find zeros of the function 

F(z) = 
0 v0 " Tl vi 

"^V^fo 
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but for simplicity we will instead find the zeros of 

F(z) = 0 is a system of two equations. The first one is 

äieo"Vi " • 
'6-6' ,*    ,s 

The second equation may be obtained from (6.6) by reversing all 

occurrences of £, and c2 i'n the expressions for the 6's and e's. 

The appropriate derivatives may be computed similarly. 

Now that a specific equation, (6.6), is ready to be solved, methods 

for computing the various divided differences that appear in it will 

be required; these methods are in Appendix 5. We turn now to the 

question: what happens when ?. ■+ £„? 

The original function (4.2) is undefined when c. = C?. The 
ied equation modified equation 

VoVvK"° 
turns out to be sati««^    v. e satlsf^ed whenever   r   a .      R version,(6-6,-,s""""->-U,ri;:de;d,ffe^ 
to its terms as   c   -> , am1ne what h*PPens 

We discover that 

lim    i,  = Ajr^\     «  k-1 
*i »>»2 
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Substituting these expressions in (6.6) and simplifying leads even- 

tually to the equation to be solved for the nearest triple zero 

(III.7.1). Recall that the case of a complex conjugate pair also reduced 

«       to a triple zero when the divided differences became confluent. Just 

as in that case, numerical methods will be required to inhibit conver- 

gence to the triple zero solutions we wish to avoid. 

1 Both the method of this section and the method for k > 1 double 
i 

zeros may be used when two double zeros are required. Both methods 

seem to work satisfactorily for polynomials of low degree, but the 

general method for k double zeros worked better for Wilkinson's poly- 

nomial of degree 20 discussed in Chapter X. The equations described in 

l this section seem to have a much greater propensity for causing Newton's 

\ method to dawdle aimlessly without converging. It may be that the 

\ divided differences warp the geometry of the function whose zeros are 

i sought in a way that tends to conceal the zeros. There is some compen- 
i 

sation in the fact that those divided differences help prevent coales- 

i cence of the zeros much more effectively than numerical means alone. 



CHAPTER VI 

LOCATION THEORY FOR NEAREST POLYNOMIALS WITH A DOUBLE ZERO 

1.  Introduction 

In this chapter may be found some clues to the answer to the 

question: Given a polynomial p, all of whose zeros are simple, where 

should we look to find the nearest polynomial p + q with a double 

zero c? That c which minimizes BqS globally is one of the solu- 

tions of the equation 

(1.1) F(0 =alP(c)-a0?p'(O = 0 ; 

but there are usually many other solutions, most of which represent 

local minima. 

Remember that the real non-analytic functions aQ and o, are 

defined as 
n 
i^,n"j 

n-1 

j«i J 

o, = I U2rj(n-j)/w, . 
1  j«l J 

Thus we are considering only the norms derived from diagonal Hermitian 

quadratic forms. Most of the results to follow, moreover, only apply 

to real polynomials p. 

The purpose of attempting to develop a theory of location is to 

make our numerical solution procedures more efficient. Equation (1.1) 

is typically solved by Newton's method from some starting point. An 

ideal «Parting point would have the property that Newton's method 

would always converge to the global minimum corresponding to the 

138 
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nearest polynomial with a double zero. A satisfactory starting point 

would always converge to a local minimum that is nearly globally 

minimal. The ad hoc starting procedures discussed in Chapter VIII 

usually seem to be satisfactory but the known theory is insufficient 

to account for their success. 

The results in the following sections seem far from optimal. One 

might hope that a theory could be developed comparable to the elegant 

theory of the location of zeros of polynomials discussed by Marden [21] 

and Householder [12]. But much of the theory for polynomials hinges 

on the entire analytic nature of pol;serial functions. Certain of the 

examples to follow effectively counter some of the conjectures that 

might be made by analogy with the polynomial case. 

We can make a few preliminary observations about (1.1). Among 

its solutions are the global minimum we seek, numerous other local 

minima, a few non-minimal stationary points, and the solution ;»0. 

II This solution c = 0 is an artifact of the way we wrote the equation. 

We could just as well divide by ; and write 

(1.2)        ^ C*(r((n-j)/w.)U2|n"J"1)p(0-o1p
t(c) - 0 . 

j«l     J ' 

Then ; « 0 is a solution of this equation only if p'(0) « 0; that 

is, only if the next to last coefficient p. « 0. An examination of 

the stationary condition q*W « £*A tells us that q , * 0 while 

the constraint Ap + Aq * 0 tells us that q , « -p ,. Therefore 

; * 0 is a stationary point for Iqi if and only if p . * 0. Even 

then c -  0 need not represent a minimum. 

wsMmmkmm-mKtamiMjBL ..a«» *•*• mmi 
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Since uhe factor t,   does not seem to contribute any information, 

why not leave it out in our subsequent analyses? We keep it for a 

reason which becomes apparent when we write (1.1) in yet a third form: 

(1.3) CP'(C) _ gi^) 

Now 

-y be thought of as a weighted average of the quantities M)  If 

we do so then we realize that 

0 < R(C) < n-1 
for A«, 0 1  Id < «■ . 

Thus 0.3) equates a meromorphic function of the complex variable 
5 t0 a b0^ Positive real function of k|, which is in fact 

analytic when ,garded as a real function of a real variable. If the 
actor of c were removed from (i>3) it wouid iose ^ts 

We will exploit that form later. 

A typical result in this theory is the following. 

£rofios_itjon. Let p be real with t^  i 
P   real with two real zeros 0, and a 

al la2- Then '     2' 

F(c) ■"1P(O-o0cp'(c) ■ 0 

has a solution c such that a, < r < Q 
1 — — u2* 
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Proof. If a, and ou have opposite signs or if either is zero, 

then c = 0 satisfies the assertion. Then without loss of generality 

assume that 0 < a, < ou and that (a-,,a«) contains no real zero of 

p. Then 

F(a1)F(a2) ■ a^a^aQ^Ja^p' (a^p'tog) . 

If that product is zero or negative then a zero of F lies in [a,,au] 

by the intermediate value theorem. But if that product is positive 

then p'(a,)p'(a2) > 0. Considering Taylor series, we see that 

p(ou,+S) * 6p' (a1) , 

p(a2-5) * -6p'(a2) , 

for small enough 5 > 0. Thus 

p(a!+6)p(u2-6) * -ö^'Co^p'tog) < 0 

so the p must have another zero in [a,.ou], contrary to assumption. 

The contradiction implies F(a,)F(a2) <_ 0 and concludes the proof. 

imtlarr *** .»a*.**...-- -*m:  :.  num. .jmmam « 
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2.  No Complex Solutions for Certain Real Polynomials 

Wilkinson's polynomial of chapter X has the property that all its 

zeros are real and have the same sign. When solving (1.1) for 

Wilkinson's polynomial we need not search for complex zeros because 

of the following. 

■i 

Proposition. Let p(x) = n(xm-a.) be a complex polynomial in xm. 
j   J 

If all the numbers a. are either zero or have the same argument 8 

then the non-zero solutions c of (1.1) may only have arguments 

(e+kTr)/m, 0 < k < 2m-l. 

Corollary. If a real polynomial p(x) = n(x-a.) has all real 

zeros a. all of the same sign, then all its c's are real. 
J 

2 ? 
Corollary. If an even real polynomial p(x) = n(x -a.) has all 

zeros ±<x. real, then all its ;'s are either real or pure imaginary. 

Proof of Proposition. Rewrite (1.1) in the form of (1.3): 

5P'(0/p(0 = R(|C|) • 

Remember R is a real function of )?| and 0 £ R < n-1. Suppose 

first the special case that all a. = 0 so p(x) = xn. Then (1.1) 

reduces to n = R(c), so the only solution of (1.1) is the universal 

solution ; = 0. 

Otherwise we may assume that at least one a. f 0. Recall that 

m-1 P'(0/P(0 ■ ^l]/Um-a.) 

smc"1"1 I (;%.)/km-a.|2 ; 

aoM am 
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take imaginary parts of (1.3) to find 

0 = Im(?p7p) , 

0-I»(5
mI5j/|c

M-aJ|
2)  , 

0= i^V^II^I/uV.!2 . 

Since at least one a. is non-zero the sum I   of positive quantities 

may not vanish. Then if 0 denotes the argument of a non^-zero x, 

we have 

Im(exp(i(m0-e))) = 0 

from which the result follows. Q.E.D. 

Note the two resulting equations for |c| are 

R = mUfll/(|Cf±|a.|) 

which could be expressed as two real polynomials of degree 3n - 2 in 

|?|. However, for polynomials in xm it might be reasonable to 

restrict perturbations to polynomials in xm by causing appropriate 

weights in the norm to become infinite. Then R(|c|) becomes R(|c|ni) 

and the resulting polynomials are of degree (3n-2)/m in |c|m. 

■;^^jmmjsm*L 
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3.  Counterexample 

The previous proposition might lead one to hope that polynomials 

with all zeros real would not have complex solutions to (1.1). The 

following counterexample, produced by W. Kahan, eliminates such hopes: 

Example. Let n = 2 and p(r) ■ (T-1)(T+1). If 2w, < w«, 

then (1.1) has a complex solution 

C = ± 1/1 - {2VI^/VI2) . 

Comments. Some other surprising facts may be learned from this 

one example. We start by deriving all the solutions of (1.1). Let 

to = (w,/Wp) > 0. Then (1.1) is 

|c|2(c2-D-(kl2+o))c(2c) = 0 

0' , dividing by the solution ? = 0, 

then 

and 

C|d2 + 2cu> + C* = 0 ; 

(Re e)(|c|2 + 2w+l) = 0 

(Im C)(|C| +2co- 1) - 0 

By considering the various possibilities we conclude that the only 

solutions of these equations are just x. = 0 and, if w < i, 

1/2 
; = ±i(l-2w)  . The norm of the corresponding q's may be calculated 

to be 

Iql -  w2 , for a double zero at 0, 

Iql s 4U(1-M)W2 , for a double zero at ±i(l-2w) 1/2 

JLJSESM, 
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1 1 /? 
So for 0 < u> < j,    the global minima are at = ±i(l-2oi)  , not at 

5 = 0. In this case, 0 represents a saddle point; it is where the 

global minimum occurs if only real z,   are considered. But on the 

imaginary axis, the minima occur elsewhere, and a local maximum occurs 

at c = 0 if only pure imaginary t,   are considered. 

Of course, there are other real polynomials with all zeros real 

which have solutions of (1.1) which are complex but not pure imaginary. 

It is perhaps surprising that an even real polynomial with some zeros 

real and some pure imaginary may have solutions c of (1.1) which are 

neither real nor pure imaginary. For instance, by appropriate choice 

of weights so that the R(|c|) of (1.3) has the value 2 when 

|s| = 1, we find that some solutions c for the polynomial 

P(T) =T
4
~1 

are s -  0 and c = (±l±i)/v^". We may further restrict the weights 

so that these are the only c's. 

Returning to Kahan's counterexample, recall the Lucas theorem: 

the convex hull of the zeros of a polynomial contains all the zeros of 

its derivative. The present example shows that no such simple state- 

ment may be made about the geometrical relationship between the zeros 

of a polynomial and the solutions of (1.1). Some early experimental 

results suggested that the convex hull of the origin and the zeros of 

the polynomial always contained the global minimum. But the counter- 

example shows that this is not always the case. 

Yet the solutions of (1.1) do behave somewhat like the zeros of 

the derivative of the corresponding polynomial. Consider these symmetry 
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Facts: 

1) If p is real then F of (1.1) is real; 

2) if p is odd then so is F; 

3) if p is even then so is F; 

4) if all the zeros of p are multiplied bj a constant phase 

factor exp(ie) then so are the zeros of F. Thus there is no essen- 

tial difference between a real polynomial and a complex one whose 

zeros are symmetric about a line through the origin. 

In contrast, consider this invariance of polynomials under scaling: 

if the zeros of p are all multiplied by a scale factor, then all the 

zeros of all the derivatives are scaled by the same factor. But if 

the weights in the a's of (1.1) are regarded as fixed, then scaling 

the zeros of p does not introduce a corresponding scaling of the 

solutions of (1.1), which change in a complicated way. One could 

regard the weights as depending on the scaling factor, however. If, 

for instance, 

-j - v^r* 
where c. is fixed and y is the modulus of the zero of p of 

largest modulus, then a scaling change in the zeros of p will produce 

a corresponding scaling of the solutions of (1.1). One could go 

further and imagine that u -  |?|, a function of the ostensibly 

unknown c. Then the o's are constant and the F of (1.1) takes an 

especially simple form: it becomes a polynomial. In some of the 

sections to follow this analytical "swindle" will be exploited. 
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4.  A Bound on the Solutions 5 

We will exploit Theorem (17,2a) of Marden [21] to bound the solu- 

tions of (1.1). It is not immediately obvious how large those solutions 

might be, relative to the zeros of the polynomials. 

Marden's theorem concerns the location of the zeros of a linear 

combination of monic polynomials of degree n. Let x(T)-Ay(r) be 

that linear combination, and let C(c,r) represent a circle of radius 

r centered at c. C (c ,r ) contains all the zeros of x and 
A   A   A 

C (c ,r ) contains all the zeros of y, The theorem asserts that all 
J       J       J 

the zeros of x - Ay lie in the union of the n circles C.(yk,pk), 

1 < k < n, where 

\ '  (cy"Vx)/(1-uk) 

and 

and 

_ J/n 
% -  A  ek . 

The e. are the n n  roots of 1. 

Our result is the following. 

Corollary. If la-j^l is the maximum modulus of the zeros of p, 

then Ol the solutions c of (1.1) satisfy 

(4.1) Ull2"2|°™xl   • 

Proof. Rewrite (1.1) in a form appropriate to the theorem: 

GRU) « (*^) - (£)P(C) = 0 . 

Then if R is held fixed, 6R is in the proper form. Let the circles 
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C  and C  be crudely approximated by C(0,|a|). This circle 
A V lilQA 

certainly contains all the zeros of   p,   and hence of   p',   as well 

as   0.   Then   y.  = 0   so the circles   Ck   of the theorem are concen- 

tric and only the radius of the largest matters: 

-      l + 'VRTn'      -        , 
k      |l-rVR7neJ      maX 

Reiiiembering that   0 < R < n-1,    it is clear that 

-11ÜMK l       I 

a_ 

Since any solution of (1.1) is a zero of GR for some positive 

R < n-1, the bound is valid for all such solutions.        Q,E.D. 

The purpose of this crude estimate is just to show that the solu- 

tions of (1.1) are bounded. The gross approximations involved might 

lead one to doubt that the bound is realistic, and indeed for "normal" 

polynomials the solutions do not. seem to exceed |o  I. max 

However Wilkinson's polynomial of degree 20, discussed in 

chapter X, has a solution for (1.1) at ; f -117.31; the norm has 

w. « 1/|p.|  which minimizes relative changes in the coefficients. 

In this case |c„.J exceeds |a_ I by a factor of nearly 5. 
Mid X llifl A 

Presumably by appropriate choice of norm that factor could be made 

even larger -- how much larger is unknown. 
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One might consider a type of iteration scheme: since the bound 

(4.1) depends heavily on the maximum value of R, which we bounded by 

n-1, any knowledge that reduces that R   should affect the bound max 

appreciably. But R is monotonic in |?| so Rmav depends on the 

bound on Id, which is in turn dependent on R  . Clearly we could 
max      J 

reduce the bounds on |?| and Rmav alternatingly. Unfortunately in 

practice such an iteration seems to improve the bound so little as to 

| be scarcely worth the trouble. 

I 
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5.  Propositions for Real Quadratic Polynomials 

The example of section 3 was a counter to a tempting, but incor- 

rect assertion. That same example could be regarded positively, how- 

ever, as an example of the propositions of the present section. 

Proposition 5.1. Consider a real monic quadratic polynomial 

p(x) = T - 2CCT + Y • 

Let u be the modulus of its largest zero. Then every solution z 

of (1.1) satisfies |c| < v. 

Proof. By examination of cases. Equation (1.1) may be written 

(C
2
-2OU;+Y)(U|

Z
/W1) - c(2?-2a)(U|2/w1+l/w2) = 0 . 

Factor out c to remove the uninteresting solution c = 0; then 

letting w * (w,/wJ > 0, and taking real and imaginary parts leaves 

the equations 

(5.1) |c|2 Re ; + (2u-y)Re C - 2Oü> - 0 , 

(5.2) |cl2 Im C + (2u+y)Im c - 0 . 

The second of these equations is satisfied if |c| = -(2OJ+Y) or 

Im c - 0, providing two cases. 

In the first of these cases y < 0 so the zeros of p are real 

and 

u ■ |a| + (a2-Y)
1/2 . 

But we may easily verify that 
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|C|2 - -(2W+Y) £U2 

as claimed. 

Im c = 0 in the second case so the solutions c are just the 

real solutions of (5.1), which satisfy 

(5.3) g(c) = C + (2U-Y)C - 2aw = 0 . 

g may have complex solutions but these do not satisfy (1.1). 

We will prove the proposition by showing that g(-y) < 0, 

g(+y) > 0, and the real critical points where g'(c) vanishes are 

contained in [-y,+y]. Thus the real zeros of g are bracketed in 

t-u.+u] whether they be 1, 2, or 3 in number. The details, however, 

depend on whether the zeros of p are real or complex. 
2 

Suppose first that a < y   so the zeros of p are complex and 

y = Y1/2. Then 

1/2, 

and 

g(-u) * -2u(y ' +<x) < 0 

g(+u) - +2a)(y1/2-a) > 0 . 

Furthermore the zeros of g' are ±((Y-2U>)/3) ' . When these zeros 

1/2 
are real they are less than Y   in modulus since to > 0. 

2 
Now suppose that   a   >y   so the zeros of   p   are real and 

Then 

- |a| + (a2-Y)1/2 . 

g(-y) « -\i(u +2U-Y) - 2aa> 

g(+u) = +y(u2+2u-Y) -2aw 



152 

.1 

It is easy to verify that 

y2 + 2w-Y > 0 

and 

|y(y2+2w-Y)| > |2ow| 

so g(-y) < 0 and g(+y) > 0. And finally we may verify that when 
1/2 g' has real zeros +((Y-2W)/3)  , they do not exceed y in magni- 

,j tude. Q.E.D. 
4 ft 

\ Our next result is in a similar vein. 

Proposition 5.2. Consider a real monic quadratic polynomial 

P(T) = T - 2ax + Y . 

] Then there is a solution c of (1.1) in the smallest circle containing 

both zeros of p. 

2  1/2 
Proof. The zeros of p are a±(a-Y)   and the smallest 

circle containing them has center o and radius |a -y\      . Therefore 

the assertion is that there is a solution ? such that 

|c-a| < |a2-Y|
1/2 . 

The solution ; « 0 satisfies the proposition if Y < 0 or Y > 2a2, 
2 

so assume henceforth that 0 < Y < 2a . 

Recalling equations (5.1) and (5.2), we find that the only remain- 

ing solutions are the real solutions of 

gU) s ; + (2W-Y);-2CW » 0 . 



Thus we must show that there is e solution   x,   in    h,8]   where 

n = a- ja2-Y|1/2 ,        6 = a+|a2-Y|1/2  . 

We do so by demonstrating that   g(n)*g(8) <_ 0. 

Now 

g(n)g(6) = CX2(3|CX2-Y| +a2-y)2- |a2-Y|(|a2-Y| + 3CX2-Y+2U>)2 . 

2 
Suppose first that a >_ y.    Then 

g(n)g(6) = -4(a2-Y)(Y2 + w2 + 2u(2a2-Y)) . 

But the last factor is easily seen to be positive. 
2 

Suppose that a < Y. Then 

g(n)g(6) = -4(Y-a
2)(u)2 + 2a2a) + a2(2a2-Y)) . 

2 
But at the outset we restricted y < 2a . Q.E.D. 

This last proposition might let-d one to suppose that for any poly- 

nomial p of degree n >_ 2, equation (1.1) has a solution in the 

smallest circle containing two zeros of p. In section 7 this suppo- 

sition will be shown to be incorrect, and a weaker conjecture will be 

proposed. 
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6.  Swindle Results for Real Quadratic Polynomials 

A method for evading certain problems arising from the njn- 

analyticity of (1.1) was briefly mentioned in section 3. Namely, each 

weight in the norm was defined to be 

Thus aQ and a, are constant and therefore so is R of (1.3). 

This amounts to an analytical swindle since the dependence of the w. 
J 

on £ was not incorporated into the derivation of (1.1). None the 

less any solution of (1.1) is also a solution of 

(6.1) sU) = SP'U)-Rp(c) = 0 

for some fixed R; the R depends on |c| in general, but not in the 

swindle case. In either case 0 <_ R < n-1. 

It is useful to study the solutions of (6.1) for fixed R to see 

what light they shed on the original problem. 

We start by noting that (6.1) has a solution ; = 0 only if 

p(0) ■ 0. So the part of the previous theory that depends on a solu- 

tion at ; * 0 may not necessarily be true. 

Write the quadratic p as 

2 
P(T) » T -2OT + Y 

so o is the arithmetic mean of the zeros of p and y   is their 

product. Then the zeros of s are 

z1-^ ,.   /1-R\2 2A/ R v 
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In the limiting case R -+ 0, the c's approach a   and 0. In con- 

1/2 
trast, as R ->• 1 the c's approacn ±y '   .    So, in particular, if 

Y < 0, corresponding to the zeros of p being real and opposite in 

sign, then in the second limit the zeros are pure imaginary. This 

situation corresponds to the counterexample of section 3. 

Two results from the previous section that the limiting cases 

support are that 1) the magnitude of the c's does not exceed that of 

the larger zero of p, and 2) there is always one c in the smallest 

circle containing both zeros of the quadratic p. These are correct 

inferences. 

Proposition 6.1. Let c be any solution of (6.1) when p is a 

real quadratic polynomial. Then |c| does not exceed the magnitude 

of the larger zero of p. 

Proof. Consider four cases: the zeros of p are equal; the zeros 

of p are complex; the zeros of p are real as are the c; the zeros 

of p are real but the z.   are complex. The first case is trivial 

and the other three cases are similar in proof. For the last case, for 

instance, we have 

(1-R)2a2 + R(2-R)Y < 0  and  a2 > y  . 

Obviously y < 0. We wish to compare |c| with u, the modulus of 

the larger zero of p: 

n— 
u s |o| + /a -Y . 
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Thus 

y2-|r|2 = 2a2 + 2|a|^-2Y(^) 

which is a sum of non-negative terms, since y <  0 and R < 1. The 

last term is positive so |;| < y. Q.E.D. 

Proposition 6.2. The smallest circle containing both zeros of a 

real quadratic p contains a solution of (6.1). 

i 
i 

j Proof. As in the previous proposition there are four cases. 
i 

i Below we sketch the proof of the case in which both zeros of p are 
i 2 ^ complex. Then a < y» Y > 0, and both s's are real. We wish to 

show that |5-o| < (Y-O )   for one of the c's. 

1 Now 

\ C-a- (^L)a±A1/2 

t 

tt 

where 

Then 

. _ ,1-RN2 2A R A = W a + 2^RY 

,  ,2 f  1 x2 2 . ,1-R*2 2 . , R » ? , 2 . .1/2 

and we want to show that for either + or -, 

2 
+aA1/2 < (1-R)(Y-O2)-^ . 

If we choose the sign that makes +a negative we find that the last 
2 

inequality is equivalent to Y>OI , which is what we assumed. 

The proofs of the other cases are similar. Q.E.D. 

As a tool for analysis the swindle does not seem to help much in 

the quadratic case. All of the propositions about quadratics are 

Igajpj^^s^&^ghJMJlJPW 
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* 

p-d just as easny ,thout the sKi.nd]^  Itl,„ 

since it is difficult to extend any result, ,„,,.,. 

the swindle. 
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7.  The Smallest Circle Containing Two Zeros Need Not Contain a z, 

In sections 1 and 5 we learned that 1) there is a real c between 

any two real zeros of a real polynomial p, 2) a corresponding result 

holds for complex polynomials symmetric about a line through the origin, 

and 3) the smallest circle containing the two zeros of a real quadratic 

polynomial contains a ?. Furthermore, when a is a complex zero of 

a real p with |Re a\ <  |Im a|, then x, - 0 is contained in the 

smallest circle containing a and its conjugate. In section 8 we will 

see that when a polynomial with a double zero is subjected to a small 

perturbation causing the double zero to split, the smallest circle 

containing the split zeros contains a c From these facts we might 

conclude that the smallest circle containing two zeros of any polyno- 

mial p contains a £. 

This conclusion is supported by all the experimental results 

reported in chapters IX and X, using norms which measure absolute or 

relative changes in the coefficients of p. But an investigation to 

settle this specific question turned up a counterexample, given below, 

and led to a further conjecture which is not yet resolved. 

The counterexample was discovered by computationally exploiting 

the analytic swindle described in section 6. A crude optimization 

program varied the zeros of a real cubic polynomial and the fixed 

constant R in order to make the c's lie as far as possible from the 

center of the smallest circle containing the two complex zeros of the 

polynomial. A polynomial p(t) was found with zeros a at 1.0 and 

.224 ± .174i. When R = 1.987 the zeros of S(T). as i;i equation 

(6.1), were -.830 and .424 ± .099i; see Figure VI.1. Thus the 

complex c's are just outside the circle containing the complex zeros a. 

SSaÄüHLifflMfcJBHfc'***' 
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The swindle was used because the polynomial equation S(T) = 0 

may be solved equickly. Our real interest, of course, is in finding 

an example without using the swindle. So another crude optimization 

program was run with p(i) fixed but with the norm weights allowed to 

vary in such a way that e = ,424±.174i remained a solution of (1.1). 

Surprisingly enough, the program quickly converged to a suitable 

counterexample: Let the weights be 1, 1000, and 10000, Then 

(1.1) has no solutions inside the smallest circle containing the a's 

.224±.174i. The closest s's are at .4245±.0993i and 0. See 

Figure VI.2. 

Thus we must discard the conjecture that the smallest circle 

containing two zeros of a polynomial contains a 5. That should come 

as no surprise, however, for the corresponding conjecture about deriva- 

tives is not true either: the smallest circle containing two zeros of 

a polynomial need not contain a zero of the derivative. Rather the 

following is known: 

Proposition. Let a circle of radius p contain m zeros of a 

polynomial p of degree n. Then there is a zero of the m-1 

derivative of p in the concentric circle of radius 

p csc((TT/2)/(n+l-m)) . 

This proposition is stated in a stronger form and proved by 

Kahan [17]. The proposition suggests the following revised 

Conjecture. Let a circle of radius p contain n zeros of a 

polynomial p of degree n. Then there is a solution of the appro- 

priate equation for the nearest polynomial with an m-tuple zero within 



the concentric circle of radius 

p csc((Tr/2)/(n+l-m)) . 

Thus real cubic polynomials that have a complex conjugate pair of 

zeros a should have a solution z,   for a double zero such that 

| c - Rea| < ^|lm a|. None of the examples we have encountered or 

constructed have violated this revised conjecture. 
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♦ I 

Figure VI.1. Counterexample based on swindle, 
No z  lies inside circle. 
p(o) ■ 0, s(?) ■ 0, R ■ 1.987. 
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h 

H *- 

4+1 

a 

r      » 
i 

••• 
a 

4-1 

+1 

a 

Figure VI.2. Counterexample without swindle. 
No g lies inside circle. p(a) = 0, 
F(c) = 0, other c's are farther away. 
w1 » 1, w2 = 1000, w^ = 10000. 
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8.  Infinitesimal Location Theory 

This section provides a bridge between the location theory of 

previous sections and the perturbation theory of the next chapter. In 

this section we seek to answer the question: "Where do the solutions 

z,   of (1.1) go when a polynomial with a double zero is perturbed 

infinitesimally?" 

Recall that if a is a double zero of a polynomial p then it 

is a solution of equations (1.1) and (6.1) -- as would be expected, 

since a place where no perturbation is required to get a double zero 

is obviously a critical point for norms of such perturbations. Most 

perturbations of a polynomial with a multiple zero will break that 

multiple zero into ill conditioned simple zeros, but we shall see that 

the solution of (1.1) only moves in a well conditioned manner when 

subject to such a perturbation. 

Let 

P(T) = (t-a)2q(T) ,   q(a) f  0 , 

be our starting polynomial with a double zero and a solution of (1.1) 

at a. Let 

p(i) = p(T)+6eh(x) ,  h(a) f  0 , 

be   p   subject to a perturbation which is a linear function of   5e. 

Also   ct+6a   will represent a zero of   p   perturbed from   a.    Then 

expanding in Taylor series, 

0 = p(a+5a) * l{5a)2p"(oO + 5e(h(a) + 6ah' (a))   . 

iear,^,'.«i Vf|' - (:*;^ff^fcM.. 
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Simplifying, we find 

(8.1) 6a * ±  ((-h(a)/q(a))6e)1/2 , 

the classical result that a double zero tends to divide into two simple 

zeros according to a fractional power of the perturbation. 

a is also a zero of 

f(c) « R(C)P(C)-CP'(C) • 

Let a + 6? be the perturbed solution when p is perturbed to p. We 

wish to find a Taylor series expansion for 6? in terms of 6e. R i? 

not analytic in 5, so we must use the fact that it is an analytic 

real function of the real variables Re c and Im c. Eventually we 

find that 

(8.2)     6? = {(R(a)h(a)-oh,(o))/(2oq(o))}6e + 0(6e2) 

provided 

and 

a / 0 

R(a)h(a)-ah'(a) t  0 

The last condition represents a kind of "orthogonal" perturbation h 

which does not affect the solution c of (1.1) to first order. 

Comparing (8.2) and (3.1) we see that for a typical perturbation 

h, the zeros of p move away from a much faster than the zero of f. 

Since those ill conditioned zeros of p are moving in opposite direc- 

tions, the smallest circle containing them will also contain a solu- 

tion of (1.1) whenever p is close enough to the manifold of polyno- 

mials with double zeros. 
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^ ! 

For further comparison, consider the change in the zero of the 

derivative of p. If a+ 66 denotes the zero of p', we find that 

66 = (-h'(ct)/2q(a))6e 

provided h'(a) f  0. So the zero of the derivative also changes 

linearly with 6e. If> (R(a)h(a)/ah* (a)) is sufficiently small — 

as must occur if a is sufficiently close to zero — then 6; and 

66 are nearly the same. Unfortunately 6c and 66 are quite 

different in general so 66 may not serve well as an estimate of 6;. 

ESiisJKÄJIHkJ 



CHAPTER VII 

PERTURBATION THEORY FOR MULTIPLE ZEROS OF POLYNOMIALS 

1.  Introduction 

In this chapter we will recall the standard theory of perturba- 

tions of multiple zeros of polynomials, discern its limitations, and 

propose a more satisfactory theory which reflects the insights gained 

from the research described in previous chapters. 

To recall the classical theory, start with a polynomial with 

multiple zero a: 

p(T) = (T-a)mq(T) ,   q(a) t  0 . 

The condition q(a) f  0 means that the multiplicity cf a is pre- 

cisely m. We wish to see how an arbitrary perturbation of p affects 

a. In general a will tend to split up into m distinct zeros. 

Apply a perturbing polynomial er(x) of degree ?.t most n-1 to 

get 

P(T) -  (T-a)mq(T) + er(T) . 

If (x-a)m divided r(r) then the problem would be uninteresting 

since the m-tuple zero a would retain its identity regardless of the 

perturbation. Similarly if (x-a)  divided r(i), l<k<m-1, 

then the k-tuple zero a would persist after perturbation and the 

only interesting problem would be the fate of the zeros cf 

(i-a)'" q(r) + (r(t)/(T-a) ). Thus we may assume without loss of 

generality that (T-Q) does not divide r(i), i.e. r(a) t  0. 

For our purposes the degree of p is presumed to be known and 

fixed. Since we are only interested in the zeros of p, there is no 

166 
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essential loss of generality in restricting the degree of r to be no 

greater than n-1, because a small perturbation er of degree n 

would be equivalent to some other small perturbation er of smaller 

degree. 

Let a + n represent a zero of the perturbed polynomial p: 

(1.1) p(a+n) ■ 0 » nmq(a+n) + er(a+n) . 

Thus 

e = n [-q(a+n)/r(a*-n)] . 

However our interest is in expressing r\   in terms of e. Since r 

and q are polynomials they may be expanded easily in a Taylor series 

about a; thus 

e = -n [q(a)/r(a)] + higher order terms . 

Then 

n ■ [(-r(a)/q(a))e]1/ni + higher order terms . 

The m different m  roots define the different perturbations n 

corresponding to the m zeros of p derived from the m-tuple zero a 

of p. 

Thus we seem to have a series in fractional powers of e when 

m > 1. In the next section we will indicate a rigorous justification 

for this result and explain a constructive method for the higher order 

terms. 

Our overall goal is to find series that converge rapidly, since 

we do not wart to calculate more than one or two terms. Consequently 

we want series that converge over the largest possible region so that 
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convergence will be fast in the region of interest. If the region of 

convergence is not much larger than the region of interest, convergence 

is so slow there that the series "fails" in the sense that it is not 

practically useful. A worse failure arises when the region of conver- 

gence does not contain all of the region of interest. 
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2.  Classical Theory of Expansions of Algebraic Functions 

In the previous section we indicated how to solve 

(2.1) f(e,n) = n q(a+n)+er(a+n) = 0 , 

subject to 

deg q = n - m < n , 

deg r < n - 1 , 
(2.2) 

r(a) t  0 , 

q(a) f 0 , 

for n in terms of a series in fractional powers of e. Now we will 

cite the classical results which justify our approach and explain how 

to construct that series. 

ffe.n) * 0 is an example of an algebraic equation defining alge- 

braic functions e or n in terms of the other. It is easy to get 

e as a function of n; our goal is to construct n as a function of 

e. We will recall certain results from standard texts, changing the 

notation to suit our problem, and omitting hypotheses which duplicate 

our assumptions (2.2). 

The first result 1s 

Weierstrass' Preparation Theorem [22, p. 105]: There is a 

neighborhood 

t < o 1 * 

such that 

In < oo  . 

f(e.n) « (E0(c) + E1(e)n+---+E^1(t)n
m"1+n,n]g(c,n) 
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for functions EQ,E,,...,E , which are analytic in that neighborhood 

and g which is analytic and never vanishes in that neighborhood. 

E0(0) = E^O) = ••• - E^fO) - 0. 

Expansions of Simple Zeros 

Consider first the case of expansions of a simple zero. The next 

result is a consequence of the preparation theorem: 

Implicit Function Theorem [22, p. 109]: When m = 1, then there 

is a neighborhood 

|e| < P1 ,   |n| < P2 . 

such that f(e,n) =0 has a unique root n = n.(e) for any e in the 

neighborhood. n(e) is single valued and analytic in the neighborhood 

and n(0) = 0. 

In other words, in the vicinity of a simple zero a, n may be 

expressed as a Taylor series in e. The theorem says nothing about 

the size of that vicinity -- it may be quite small. 

If all the zeros of p are simple, then there is a neighborhood 

in which the n zeros of p(i)+er(T) are all simple and they may be 

expressed as n Taylor series in e, defining n analytic functions 

of e. 

Given a function n(e) defined by the polynomial equation 

f(e,n) = 0, a singular point e~ may be defined for our purpose as 

one for which the discriminant of f(e0,n) vanishes. The discriminant 

of a polynomial with n zeros a, »c^...-»^ may be defined [10, p. 115] 

to be 
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D(e) -   n  (a.-a.)2 . 
; l<i<j<n   J 

D is a function of e because the zeros a. are. D(e) may also be 

expressed [12, p. 39] as a polynomial in the n-coefficients of f(e,n). 

Then at a singular point eQ, p(x) + EQr(x) has at least one 

multiple zero. Bliss [1, p. 29] shows that the radii of convergence 

of the n Taylor series for perturbed sir.ple zeros are at least as 
i 
\ large as the distance to the nearest singular point. Thus when per- 
■i 
K 

I turbing p(x), with all zeros simple, in the direction r(x), the 
i 

•i expansions in powers of E converge for Je| at least as large as 
\ 

|EQ| in the nearest polynomial p(x)+£Qr(x) on the manifold of 
r 

polynomials with double zeros. When p and r are real we must 
<j 
* remember that complex e must be considered when computing radii of 
\ convergence. 

, It is usually the case, moreover, that the radius of convergence 

t is exactly the least |e| such that p(x)+Er(T) has a double zero. 

Of course if p and r have some zero in common then the "series" 

for that zero will converge everywhere. But in the usual case when 

the zeros of p and r are distinct, the Taylor series which 

coalesce to a multiple zero of P + E«r can not converge for 

|e| > lEo> 

Expansions from a Singular Point 

What if we start from a singular poir.t, where p(x) has a multi- 

ple zero? The answer is contained in 
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Puiseux's Theorem [10, p. 118]: Let m > 1 in (2.1). Then 

there is a neighborhood 

|e| < P1 ,   in! < o2 , 

and an integer k such that n is an analytic function of 0, where 

9 = E. The k values of 6 determine k analytic functions. 

Since we require that r(a) f  0 we will find that there are 

k = m distinct branches, defining m Puiseux fractional power series. 

As before, the radius of convergence depends on the distance to the 

next singular point in any of the directions er as e takes on 

complex values. 

Newton's polygons may be used to transform f into a form from 

which it is convenient to construct the actual expansions. For details 

the curious may consult Bliss [1, p. 35] or Kung and Traub [40] for a 

modern algorithmic account; the process involves expanding f(e,n) in 

a Taylor series in both variables e and n» and then plotting points 

corresponding to the terms with non-zero coefficients. Thus 

(2.3) f(e,n) = q(a)e°nm + KaJeV + other terms . 

Because our discussion is based on the constraints (2.2) the Newton 

polygon has the especially simple form shown in Figure VII.1. Bliss 

shows how to use the Newton polygon to discover the substitutions 

e = 6m  and  r\  = 64> 

which transform (2.1) to 

(2.4) A(a+9*) + r(a+e<fr) = 0 . 

,fc 
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powers of n I 

(0,m) q(a)£ n 

(1.0) - r(a)£
1n° 

powers of e-+ 

Figure VII.1 Newton's polygon for 

f(e,n) = nmq(a+n) + er(a+n), 
q(a) f 0, r(a) f 0. 
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Bliss shows that all the expansions of interest are obtained from 

(2.4), which may be solved easily by the method of substitution or by 

faster methods [40] to express <J> as a Taylor series in 6. 

Defi ne 

X(T) = -r(x)/q(T) 

and suppose 

<t> - A + Be + ce2 + o(e3) ; 

then we find that 

»m 
A'" = x(a) , 

(A7m)(x'(ct)/x(a)) , 

"(a] 
x-ftT 

(A3/2m){^+(%Il)(^.)2} m 

It does not matter whether we use one value of A and m values of 

6 or vice versa. Higher order terms are tedious to derive for 

general m. 

For m -  1 the expressions become 

n = Ae + Be2 + Ce3 + 0(e4) 

where 

(2.5) 

f A = x(o) ; 

B = Ax'(a) ; 

C - A((x'(a))2 + |AX"(CI) . 

For m = 2, however, 

where 

= Ae1/2 + Be + Ce3/2 + 0(e2) 
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(2.6) 

A   - x(o)  , 

B =lx'(a)  , 

c = ^(x"(a) + (x'(a))2/(2x(a))) 
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3.  Failure of Classical Taylor and Puiseux Series Expansions 
i 

Suppose we consider perturbing the quadratic polynomial (T-1)' 

2 
in the direction toward (T-0) , i.e. 

p(r) = (T-7)^ + e(2T-l) . 

Then the zeros of p are 

1 - e ± /e^I =  1 - e +i£1/2(l-e)]/2 . 

1/2 1  12 
We could expand (1-e) '  in a Taylor series 1 -^e-^e  ••• , yield- 

ing Puiseux fractional power series for the zeros; those series can 

not converge outside a circle of radius equal to the distance to the 

1/2 
nearest singL^drity of (1-e)  . That singularity is the branch 

point at £ = 1. 

Thus when we consider perturbations of p from one point on the 

manifold of quadratic polynomials with a double zero toward another 

point on that manifold, the fractional power series expansions of the 

perturbed double zero fail to converge rapidly as that manifold is 

approached. The same slow convergence occurs whenever we attempt 

expansions from one point on the manifold toward another point on the 

manifold. For practical purposes, a power series that converges 

slowly is worth little more than one that does not converge at all. 

Figure VII.2 represents the space of monic real quadratic poly- 

nomials. Each point in the plane corresponds to such a polynomial. 

The coordinates of a point corresponding to 

p(r) = T + PjT + p2 

are the coefficients p, and p~. The curve is the manifold of 
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Figure VII.2. The zeros of polynomials in the shaded 
region may be represented by convergent 
Puiseux fractional power series from *. 

The zeros of polynomials on the tangent 
line may be represented by convergent 
finite integral power series from *. 



2 
polynomials with double zeros; its equation is p, = 4p?. 

The * marks the polynomial p(x) = (T-1)  whose coordinates 

are p, -  -2, p2 = 1. We can imagine perturbing p to any other 

polynomial p in the space; then we may ask: can the zeros of p 

be obtained from the zeros of p by convergent Puiseux fractional 

power series in e(p-p)? The shaded region in Figure VII,2 is the 

region of points p for which those fractional power series do con- 

2 
verge. That region is bounded by the union of the parabola p, = 4p. 

2 
and another parabola, p, +8p, +8 = -4p-, which is congruent and 

osculatory to the first. Puiseux fractional power series expansions 

from * will not converge to any point outside the shaded region. 

The shaded regions were determined by considering real perturbations 

in real directions; that turns out to be sufficient for this special 

case of a real quadratic with a double zero. For more general poly- 

nomials it would also be necessary to consider complex perturbations 

in order to properly delimit the shaded region. 

; What happens on the indicated line tangent to the manifold at *? 

' That line represents polynomials one of whose zeros is always 1. Then 

i the appropriate "expansions" for the two zeros of 

2 
(T-1)' 

when perturbed in the direction 

T + pi - p - 1 

are 1 and l-e(p+2). This finite expansion converges everywhere 

on the tangent line. 
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Notice that there are polynomials arbitrarily close to   *   such 

as 

(T-1)2 - 6(T+^-1) 

whose zeros can not be represented by convergent Puiseux fractional 

power series from *. 

In contrast to the case of starting on the manifold, suppose now 

that we start off it, but near it. Then the regions where convergence 

of conventional Taylor series may occur are circumscribed indeed; see 

Figure VII.3 for examples. 

In conclusion, we see that the classical Taylor and Puiseux 

series approaches for expressing changes of zeros in terms of a para- 

meter of the perturbations is limited in applicability since neither 

series will converge beyond the nearest singularity of the function 

they represent. In our case singularities amount to double zeros. In 

the next section we will see how to alleviate this problem. 

\ 
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Figure VII.3. The zeros of polynomials outside the shaded 
regions can not be represented by convergent 
Taylor series from *. ® marks a polynomial 
close to * whose zeros can not be so 
represented. 
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i 

4.  Why Find the Nearest Polynomial with a Multiple Zero? 

Suppose that the output of a physical system may be modeled by 

the zeros of a polynomial. p whose somewhat uncertain coefficients 

may be computed from experimental data. Suppose furthermore that 

polynomials with multiple zeros lie within the region of uncertainty. 

We may desire to determine how the zeros of the polynomial can 

vary as the coefficients vary within their uncertainty. A natural way 

to do this is with a Taylor series expansion of the type described in 

section 2, but such an approach is doomed to fail when p is near a 

pejorative manifold. Such expansions are not valid across the mani- 

folds of polynomials with multiple zeros. Thus we can not study the 

variation of the zeros of p subject to all perturbations that 

interest us if the ball representing our uncertainty intersects a 

manifold. Furthermore the convergence rate of the expansions we do 

have becomes unacceptable as they approach their radius of convergence. 

Thus we would like to find an expansion process that is convergent in 

a ball that is much larger than the uncertainty in p. Then only 1 or 

2 terms of an expansion would be needed in order to bound the variation 

in the zeros as p moves within its ball of uncertainty. See 

Figure VII.4. 

In the rest of this chapter we will describe a new method for 

bounding variations of zeros that may be used in situations like that 

of Figure VII.4. This technique is based on finding a polynomial 

p s p + 6p which is close to p and has as high a multiplicity 

configuration as any in the ball of uncertainty. All its zeros are 

well conditioned, reflecting the fact that it is far from the next 

higher manifold, p would usually be found by one of the methods 



182 

descnbed ,n enters HT-V.   w„e„ SUch .   p   „ found, the 

to be described exploits tbe -„,f.,d on wh1ch   „ 

bounds applicable over the entire region of interest 
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t next higher 
manifold 

p's ball of uncertainty 

Figure VII.4. Moving to a manifold to improve the region of 
convergence. Tay'or series expansions from p 
converge only in the shaded region. Puiseux 
fractional power series expansions from 
p = p + <5p converge in a large region as in 
Figure VII.2 which however omits points 
arbitrarily close to p. The new expansions 
from p converge in a region extending to the 
next higher manifold and including all of p's 
ball of uncertainty. 
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5.  Resolving Expansions into Components 

Our task now is to find a simpler method for describing the 

changes in the zeros of a polynomial due to perturbations. 

First consider a polynomial on the manifold of polynomials with 

one m-tuple zero: 

P(T) = (x-ctfqd) ,   q(a) f  0 . 

We want to perturb p to another polynomial on that same manifold: 

\ P(T) = (T-a)"q(T) ,   q(o) f  0 . 
„ 

\ 
\ The classical fractional Puiseux series approach of the previous 

I section attempts (and fails) to get from p to p along a straight 

* line in the space ,of polynomials of degree n: 

\ 
i &(T) ■ (T-a)mq(r) + £[(T-5)mq(t) - (T-o)mq(T)] . 

I 

I See Figure VII.5. 
f 

We will instead move along the manifold, regarding it as a 

\ convenience rather than a barrier: 

i 

] P(T) ■ [T-(a+e(ä-a))]m[q(T) + e(q(T)-q(T))] . 

f 
* Now the multiple zero stays multiple, and the change in the multiple 
# 
I zero may be easily expressed as a function of t.    If the multiple 
♦ 

I zero is a + n then 

n s (ä-a)e 

which is certainly convergent for alj_ e. The changes in the other 

zeros are described by Taylor series in the classical manner. These 

BtfcMC 
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\ 

manifold 

Figure VII.5. Two ways to get from p to p. The classic. 
Puiseux expansion goes directly via p. Tl 
new expansion goes along the manifold via 

I 

. 
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Taylor series will converge in some region in the space of polynomials 

of degree n-m. That region is determined by the locations of mani- 

folds of polynomials with multiple zeros in the n-m dimensional 

space. These manifolds correspond to manifolds of polynomials with 

more than one multiple zero in the original n dimensional space. 

■ For a specific example, if we start with a polynomial with a 

double zero, so m = 2, we can expand the zeros along the manifold 

un:il we reach a submanifold containing polynomials with two double 

',\ ze-os, or one quadruple zero, or some other configuration that implies 

i a multiple zero in q + c(q-q). A submanifold of polynomials with a 

single triple zero, however, would have no effect on the expansion, 

fo- a triple zero in p implies only a simple zero in q + e(q-q). 

Obviously this approach can be extended to polynomials with 

several multiple zeros. To g.;t from 

P(T) - (n(T-a.)mi)q(T) 
I i   1 

to 

P(T) ■ (n(T-5.)mi)q(T) 

just let 

[x-(a, + e(a,-a<))) 
i 

n 
| Suppose now that we wish to expand from a polynomial on a mani- 

$ fold to a polynomial off that manifold. As we saw in the previous 

section, a straight Taylor series expansion may be limited in appli- 

cability by the presence of the sane or other manifolds. Fron our 

present vantage point it appears that the procedure most likely to 

». 

p(T) = (n(x-(o^cto^))) 1)-(q(T) + c(q(T)-q(x))) 

.yjBg. ^.Tg^^Mfr.. 
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succeed would be to expand along the manifold to get as close as pos- 

sible to the off-manifold polynomial we seek, and then expand "ortho- 

gonally" directly from the manifold to that point with Taylor series. 

We would thus minimize the effect of nearby manifolds on the conver- 

gence of the Taylor series. Figure VII.6 illustrates the notion. 

There may still be no reasonable way to expand from p to every 

polynomial of degree n. For instance consider the situation in 

Figure VII.7. A self-intersection singularity, corresponding to a 

polynomial with two double zeros, means that it is impossible to 

expand from p to p. If our problem were, however, to expand from 

y to [5, it might be possible to do so by finding a p on y's 

manifold of polynomials with two double zeros. 

MI'BT 1 TMIT V "  ~T ^9Hh - 
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manifold 

Figure VII.6. Two ways to get from p to p. 



189 

self-intersecting manifold 

Figure VII.7.    There is no reasonable way to expand from p 
to p\ or even to p. 
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6.  A Practical Technique for Bounding Changes in Zeros 

In the previous section we introduced the notion of expanding 

along a manifold before resorting to conventional Taylor or Puiseux 

series techniques. In order to have a technique usable for homding 

changes in zeros as coefficients vary, we need to overcome two 

problems: 

1) Apparently it is necessary to solve the problem of finding 

p, the nearest point on the manifold, for every   j5 for which we want 

an expansion. As we have seen this is a difficult numerical problem 

that is even more intractable symbolically. 

2) Our expansions have always been defined in terms of a direc- 

tion r(i) and a size parameter e. We would like to state the 

expansion directly in terms of the perturbing polynomial without 

introducing the additional parameter e. 

The second problem may be solved fairly easily by letting e go 

to 1 at the end or by ignoring e altogether. We find that the term 

that was attached to the k  power of e contains powers of r that 

are always greater than or equal to k, and thus we can construct a 

series in r — whether r is represented by its coefficients, its 

zeros, or the value of r and its derivatives at some point. The 

next section contains examples of such series. 

As for the first problem, we might settle for s, an approxima- 

tion to p that can be expressed symbolically, s should be a satis- 

factory substitute in regions where the manifold is not too wild. 

Figure VI1.8 illustrates the approximation. Instead of p we 

could compute a projection § of p on a tangent surface and map s 

to a polynomial s on the manifold. We hope that s is reasonably 

close to p. 

„jar^ iimtmr..a« 
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P tangent 

manifold 

Figure vii.8. As a practical matter, the new expansion must 
get from p to ß via s rather than p. fi 1s a 
polynomial for which p is the closest po y- 
nomial on the manifold. p y 



Given p and p, s is uniquely determined by the norm, but 

there are many possible ways of mapping from the tangent surface to 

the manifold. Unfortunately there is no simple way of insuring that 

s ■ p when p *s  already on the manifold. Any discrepancy in this 

case is intolerable because it leads to the situation in Figure VII.9 

with its familiar problem of short radii of convergence. 

Any expansion technique for arbitrary p must somehow recognize 

when p is on the manifold. A vanishing discriminant is ?-> example 

of a condition characterizing polynomials on the manifold. But such 

characterizations are too complicated to be useful. 

The notion of expanding along the manifold may still be put to 

good use, however, if we only seek bounds on changes in zeros rather 

than explicit expansions in terms of a perturbation. Thus given p 

with zeros 6, of various multiplicities, we may ask for bounds on 

|e1-Si! 

for zeros 8^ of polynomials fl such that Ip-jJI <_A. See Figure 

VII.10. The variation of 8, with respect to 8. can be thought of 

as having two components, one due to motion on the manifold and one 

due to motion orthogonal to the manifold. If we can bound these 

changes separately and independently then we can add the bounds to get 

the overall variation. 

Taking a closer look at the components of p-p, recall that 

p(T) • (T-a)mq(T) . 

P(T) « (T-a)mq(T) . 

where 

EattSartMK. 
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manifold 

*gwe VII.9.    Shortcoming in revise » 
J «« on the9 ma

nnife
0

V d6d ffS 2 "eth<* when 
from s to p is doomed to havS«e;pans1on 

of convergence. e a short radius 
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 '.. 

T 

•*•   manifold 

Figure VII.10. How do the zeros vary as p* yaries within 
the small ball centered on p? A bound may 
be computed by studying the variation in the 
zeros as p varies within the larger ball 
centered on p. 

ITMlPiiiTI^l fci 
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a = a + 6a 

q = q + 6c, . 

q is a monic polynomial of degree n-m; 6q is not monic and is of 

degree at most n-m-1. Then 

P-p ■ (T-a)m6q(x) + I  (")(T-a)m"j(q+«q)(T)(-6a)J 

j=l J 

where (T) « m!/(j!(m-j)!). We will mostly be interested in the 

infinitesimal case for which we need not be concerned about the higher 

order terms. 

Summary of the New Technique 

Before looking at details we summarize the new technique. 

We are given a polynomial p with a norm and a bound on the 

uncertainty in p. We want a bound on the corresponding uncertainty 

in the zeros of p. 

The ball representing polynomials practically indistinguishable 

from p contains some polynomials p with multiple zeros. By the 

numerical means discussed in chapters III to V, we locate the poly- 

nomial p nearest to p with all zeros well conditioned; some are 

therefore multiple. Then we may determine a ball about p that con- 

tains the original ball about p and which is usually only slightly 

larger. Then we nay bound the variation in the zeros of polynomials 

p in this second ball. 

To do so we first construct symbolic expansions for the changes 

f« the zeros of p due to moving to another polynomial p on the 
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same manifold but within the second ball (Figure VII.10). For the 

multiple zeros 5 these expansions from a have only two terms but 

for the simple zeros ß these expansions from ß are Taylor series 

in the perturbation Sq. 

flow we compute expansions from p to points p which lie on the 

planes normal to the manifold at p. These symbolic expansions are 

Puiseux fractional power series to get zeros a from the multiple 

i zeros a and Taylor series to get zeros 5 from simple zeros ß. 

■ I The series are in p-p which is orthogonal to the manifold at p. 

1 Then we substitute, again symbolically, the series for 5 and ß 

\ in the second sets of series to obtain series for a and ß* which do 

•; not contain 5 or ß. Finally we may convert the numerical bound A 

,j on the size of the second ball into numerical bounds on the terms of 

I the series for a and ß\ 

{ It is essential to study an example to understand the technique. 

< The example given in the next section is simplified but contains the 

i essential ideas. 

i The method just described ought to be compared to one based on 

the results of Brian Smith t42]. Smith uses Gerschgorin circles to 

obtain bounds for the zeros of a polynomial subject to uncertainty in 

i its coefficients. Smith's bounds are easier to compute than those 

* based on expansions, but they may be unrealistic by a factor that is 

i proportional to the degree of the polynomial. However, they are valid 

| for finite as well as infinitesimal perturbations, unlike the new 

method. Comparative evaluation of the two bounding methods must be 

postponed until the new bounds can be computed automatically. 
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Notation 

Recall the vector notation of chapter I. We will represent q 

by a vector of dimension n-m+1 and 6q by a vector of dimension n-m. 

Corresponding to polynomial multiplication of 6q by (T-CX) defii 
me 

n-m+1 

n-m 

Then corresponding to polynomial multiplication of   q   or   P,<5q   by 

(t-a)"1"     define 

1 -(m-l)a 

m-1 
(m-l)6 

(-a) 

0 

m-1 

(-a) m-1 

>n 

n-m+1 

Then to first order 

P-P^m-l^-"*^ m-V 

In chapter VIII we will see thrt an »orthogonal» perturbation to 

{5   has the form 

P-P = W"1Ä*5£ 

,<t&A.^JI..   ■   ■■*■■. 
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where   Ä   is the m-1 by n matrix 

A = e*D 

e*D ,m-2 

~+      /~n-l ~n-2 e* = (a       a • a   1),   which depends on   a,    hence the   ~    in   A. 

This   A   should not be confused with the m by n+1 matrix   A   of 

chapters III, IV, and V.   A   or   e   without   *"   means   5 = a.    61   is 

an m-1 vector which is infinitesimal like   5q   and   6a.   To first 

order   W'VöJt = W_1A*6£,    so 

p = p-p # W"1A*6£ + Pm_1P16q-mPm_1q6a 

f   W"V 
Pm-lPl 

-mPm-lq J 

61 

6q 

6a 

= M6h 

The matrix operator   M   is n by n and invertible so a specific infini- 

tesimal perturbation   5p   may be mapped into   61, 6q,   and   6a,   the 

components of   6h. 

We would like to define a region in 6h-space whose image, mapped 

into 6p-space, is the ball    B6plw <_ A.    Obviously that region is just 

{5h|I6hlH<A} 

where   I6hl„ = IM5hl...    For infinitesimals with quadratic norms this 

approach is practical. 
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Best Possible Bounds for Changes in Zeros Due to Variations 

Over an Infinitesimal Ball 

To see how to get the infinitesimal bounds in a series expansion. 

let 

(6.1) r   =   *n*\, lopir = <5p*W5p = 5h*M*WM6h = 6h*H<5h = lldhllj} 

where 

) 

and 

' AW"'A* 0 0       ] 
0 P *XP 

*i *Ki 
-mq*XP1 

-mP^Xq 

m2q*Xq 

= P     *WP 
m-1     m- 1   * 

The zero entries in H arise because AP , = 0, 
m-i 

Suppose we want to compute the first two terms of an infinitesimal 

bound for the zeros a of 

P(T) = P(T) + 6P(T) = (i-a)2q(T) + 6p(T) . 

The change due to the move from p to p is just 6a. The orthogonal 

direction is W" A*5£ * W" e5X where e* is the evaluation functional 

for a and 6X is a scalar. Then using (2.6), 

XCT) -Ä. HM* 
i 

a-5 s /x(a) + xx'(a) + 

But x(a) = d\(W" e(a))/q(a) which is just a constant v. tines ; 

Likewise x'(u) is just a different constant >•- tines i\.    Thus 

a-a ■ /^"(5>.)1/2 + (v25X+5a) + 

'. mfe.'. ^f'^aur:.- 'i. --«.w*f. 
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How large can these terms become, given that S6hlu < A? The maximum 
n — 

value of    |6A|2   is   A2/(e*W"1ea)   so for the first term, 

[*^"(6A)1/2| A 
Yi 

(e*W_1e )1/2 

J/2 

a       a 

As for the second term, 

|(Y, oi) 
6X 

6a 
I < B(Y2 0 1)I„A - \vz 0 1)H 

-1 

t  * 

\ 
0 

1 

Such bounds are achievable by 6h satisfying B6hBu < A and so are 
H — 

best possible. 

A Region Circumscribing an Infinitesimal Ball 

The method just outlined is best possible for perturbations that 

are infinitesimal or essentially so. Sometimes we may be content with 

bounds that are not optimal but hopefully are realistic. 

To that end rewrite (6.1) as 

where 

ifipr « 5g*V6g 

f 1    0   0 

0   1    v 

I 0  v*  1 

<q*X,)"Z 
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6g = 

W"1/2A*6£ 

(P1*XP1)
1/Z«q 

m(q*Xq)1/26a 

Then we might let 

BW"1/2A*6£89 = IW'Vwi < A , 

l(P1*XP1)
1/2«ql2 = BPra.l

Pl6q8W - A ■ 

Bm(q*Xq)1/26ol2 « mlP^ql^Sal < A ; 

but depending on v, we might find that the image of the region so 

defined does not contain the ent^-e ball I5plw < A. If q = X e 

then v -  0 and the image is just the ball, while if q = P,u then 

Ivl s 1 and the image is not an n-dimensional ball or ellipsoid but 

something of lower dimension which can not possibly contain the ball. 

To see what is going on, suppose I6plw * A exactly and 6£ = 0. 

How large can 6a and 6q become? We have 

1/2; 

[  m(q*Xq)1/25a . 

I 1  v 

v* 1 

' (P^XP,)1'2*» 

m(q*Xq)1/26a 

so 

5q*(P1*XP1)5q + m
2q*Xq|6a|2 « A2/minev 

where "minev" means the smallest eigenvalue of 

1 v 

v* 1 

I mkn   m TT . ■«••»*** 
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But the eigenvalues of that matrix are just 1, of multiplicity n-2, 

1 - Bvlp» and l + flvB«. So at worst 

|6a|2<-2 £  

where 

n q*Xq{l-|vl2) 

»Vipi^wli4vT7* 

vj2_q*XP1(P1*XPir
1P1*Xq 

"2        q*Xq 

Therefore our constraints should read 

{UÜL « BW"1A*6iUw < A£ 5 A , 

B6qiQ = BPra_TPr6qllw < Aq = A/(l-iv«2)1/2 , 

|te| < Aa = A/(mBPm_iqIw(l-Iv!!2)1/2)  . 

The image of such an infinitesimal region does indeed contain the ball 

B5plw < A,   and in fact circumscribes it; the question remains:    how 

much larger is the image than the ball?   If   St, 6q,   and   5a   have 

bounds   A., A ,   and   £     in the proper norms, then 

1+lvl. 1/2 

Thus bounds based on (6.2) will be realistic if and only if |vl? « 1. 

It turns out that Ivl« « 1 if and only 1f P .q, which has 
t m-1 

an m-1-tuple zero a, is far from the nearest polynomial P ,P,u 
m-!  l 

with an m-tuple zero   a.    To see this, solve the least squares problem 

"find u to minimize Bp
m.i

('"pm-i
piuV t0 9et 

«■ '""liVV'V,' 
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so 

IP ,q-P  P.ul.. 
m-1  m-1 1 W 2 ■ ^1*w

1/2(i-M1/2Pm.i
pi»1/2Vipi^)>'1/2,>B.i*«« 

v-1, = q*Xq - q*XP1(P1*XP1)"'P1*Xq 

* q*Xq(l - lvl|) 

and 

? Bp
m l^-Pn, ipiullu .„i' _ T BM_ m-1 i w jV5 _ i _  

Recall from section II.3 that the condition number y   of the 

multiple zero a is inversely related to the distance to the next 

higher manifold. In fact, from the definition of condition number in 

II.4 we know 

. 1  1  |y(g)l 

for any y of degree n-m or less. Take y - q-P,u in particular 

to see 

whence 

1/(1 -lvl2) <m
2lPm-1qlJ(l+Ivl2)Y

2 

* 2ra2|Pm-l<42 • 

Thus we have demonstrated the 

Proposition. If the condition number of a is snail then the 

inage of the infinitesinal region defined by (6.2) is not nur.h larger 

then the infinitesimal ball I6plw < L. 

mum—'wr i ' "- 
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Bounds for Changes in Zeros Due to Variation 

Over a Region Circumscribing a Ball 

When it is inconvenient to bound the changes in the zeros by use 

of (6.1) we can resort to (6.2), If the zero a is well conditioned 

and the ball is not too big then we have confidence that the error 

bounds we derive are not much larger than necessary. 

So suppose that A , A , and A  bound Si, 6a,   and <5q. How 

can the zeros of p vary subject to these bounds? Let a be the 

multiple zero and ß a simple zero of q. First consider possible 

changes due to motion along the manifold. Let 5 and ß denote 

corresponding zeros of a polynomial p along the manifold. Trivially 

la-ctl < A . 1  ■ — a 

To get ß it is necessary to construct a Taylor series expansion, ß 

is a simple zero of q; ß a simple zero of q + 6q. Let 

q(r) = (T-ß)qß(t) and 

x(x) = -<5q(T)/qß(ß) 

as in (2.5). Then 

We 

ß-ß • x(ß)+x(ß)x'(ß) + ... 

|S-B| I |x(B)| ♦ |x(B)||x'(B)| + ... . 

can use I5qlg < A  to obtain bounds for these terns. For instance, 

5q(3) ■ e|6q 

where e* is the functional that evaluates a polynomial at B. Then 

y-«*■■ -j—t^t 
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i 

|Sn(ß)li0e*||Qfl6q||n< je*j 
Now ' ^ 

'^'p = ,eS<PlVfV,V" V2 

Which U a const">t that my be evaluated.    So 

|x(e)|±Ä<. 
fie *fi 

ß "( 

-d succeeding terms may be calculated in ^ ^ ^    ^ 

- be „„,,« with.ust a few terms lf   q (a)    1s not too ,„,„ 

Thus we may bound the change in a   and a   A     . 

mnitoli. t0 m0VenentS a'0"' °» 

"ext to consider äre changes due t0 ^^ .^^ ^ 

manifold.    Suppose we are at 

P(T) ■ (T-5)mq(T) , 

and   I   1s a zero of   q.    Then an orthogonal perturbation is   W'W 

To see what happens to   s     n«. a *.> 
'    USe a formula such as (2.6).    First 

define 

X(T) « -(W-1Ä*5£)(T)/q(T)  ; 

then for   a,    a zero of   jp * p + w°A*6£. 

ä-5-^))^+(x(a))2/..x.(a)/( 

Now 

x(5) = -S*W"1A*a/q(a)  , 

'*(*)! <  i'e*W"1Ä*6£!/'q(5)| 

If   51    are the zeros of   q,    then    ;q(5),  «njs.g^. 
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A lower bound may be calculated by using 

15-^1 > la-^l - AQ - Aßi 

where   Aß.    is the bound for   |ß.--BJ    computed previously. 

As for the other term, 

|e*W"1A*6£| < I§*W"1Ä*ILI6JIIL < le*W'1Ä*iL.A£ ; 

le*W""1Ä*lL ■ Ie*W"1Ä*(AW"1A*)"1ÄW"1el2 . 

Since |a| -A <  |5| <  |a| + Aa we can compute a bound for |x(5)| and 

for the other terms of |a-5|. 

Similarly we can compute a bound for |B-ß| for B, one of the 

other zeros of <!j. The process is similar to that for |B-S|. 

Obviously these derivations would be much less tedious if a 

suitable algebraic manipulation system were available to do part of 

the work. 

So far it may not be apparent that the process described is much 

of an improvement. A simple example in the next section shows that 

the payoff can be substantial. 
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7.  An Example of Expansions 

We will apply both the classical and the new expansion techniques 

to an example. It will become evident that the new expansion technique 

is very much dependent on a symbolic manipulation system like MACSYMA 

or REDUCE [38] for its successful implementation. Even though the 

example we provide is somewhat contrived, the amount of algebra 

required is substantial. 

We will study the zeros of polynomials in the neighborhood of the 
real cubic 

P(T) = T3 - (1+6)T2 - (H5)T + (1-6) , 

with 6 * 1E-6. Its three simple zeros are 

% » - .39999975 , 

6l1 « .99877563 , 

^ '   1.00122512 . 

The last two of these are somewhat ill conditioned. We will use the 

uniform norm in which all weights are 1; then the condition numbers of 

a. and cL are about 350; the condition number of 8 is about .43. 

The results are giver; in Tables VII.1 and VII.2. p is the 

original polynomial with zeros a,, a., and 6. p is the nearest 

polynomial with a double zero: 

P(T) - (r-a)2(T-ß) 

where a ■ 1 and ß * -1. Finally ß and 5 represent zeros of an 

arbitrary polynomial p" such that r * p-p with Irl ^ a, or 

r » p - p with Irl < Ä. 

207 
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Table VII.1.    Expansions to p 

Classical Taylor series 

From   £ ■ -.99999975,   a simple zero of   p: 

g - B - .25r(B) + .25r(g){.25r(g) + .25r»(g)) + 0(r3) . 

Pre,   B * -1,   a simple zero of   p: 

5 s ß - Jr(ß) + |r(ß){Jr(ß) ♦ Jr'(B)> + 0(r3) . 

From   a1 ■ .99877563   or   a2 - 1.00122512,    simple zeros of   p: 

a, ■ S1 + 204r(a1) + 204r(a1){83282r(a1) + 204?'(a,)} + 0(r3) 

a2 » a2 - 204f(a2) - 204r(S2){83386r(S2) - 204r'(S2)} + 0(?3) 

Classical Puiseux fractional power series 

From a » 1, a double zero of p: 

a-a+ /|^+|{]r(a)-r'(a)} 

i n  1    1     1     (ir(a)-r'(o))2 

+ 0(r2) 

"Expansions" based on the new technique 

From ß ■ -1, a simple zero of p: 

ß « ß - 6q 

& " § ♦ xg(ß) 4 xg(8)xj(g) ♦ 0(x|) 
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From a = 1, a double zero of p: 

a = a + 6a 

a = a + /x~(5) + ix~(a) a    2a' 

1 (xi(5)V 
+ iyx5(a){xS(5)+1S__} + 0(x5

2) 



Table VII.2. Bounds on Zeros 
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Crude bounds based on classical expansions 

| MS| < .43A + .43A2 + 0(A3) 

|B-S| < .43A + .43A2 + 0(A3) 

|a2-a2| < 353A + 5.1E7A2 + 0(A3) 

|a-a| < .93A1/2 + .78A + (.60+  ~43—)A3/2 + 0(A2) 
/|r(a)|/A 

Crude bounds based on the new technique 

|g-ß| < .84A + .38A2 + 0(A3) 

|5-o| < .93A1/2 + l.OOA + .66A3/2 + 0(A2) 

■ i 

Best possible bounds based on classical expansions 

|B4| < .43A + .078A2 + 0(A3) 

|g-g| < .43A + .078A2 + 0(A3) 

|a2-S2| < 353A + 5.1E7A2 + 0(A3) 

|o-a| < .93A1/2 + .42A + (.)3+       'ZZ — )A3/2 + 0(A2) 
v'|r(a)i/A 

Best possible bounds based on the new technique 

|8-ß| < .43A + 0(AJ) 

|o-o| < .93A1/2 +.42A + .0084A3/2 + 0(A2) 
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Table VII. 1 represents expansions to p from p and p. There 

is little difference in the expansions for j5, but the difference for 

a is remarkable. Starting from the ill conditioned zeros a, the 

Taylor series terms have huge coefficients reflecting short radii of 

convergence. In contrast, the fractional power series expansion from 

the double zero at a   has modest coefficients but exhibits a different 

kind of shortcoming: in certain directions the fractional power series 

does not exist at all, namely those directions, tangent to the manifold, 

such that r(a) = 0. Then the coefficient of the third term becomes 

1/2 
infinite because its denominator contains (r(a))  . As we have seen, 

in this direction the proper series expansions consist of a trivial 

one a = a and a Taylor series in integral powers of r. It is easy 

enough to bound changes in that special direction; the severe problem 

is that when r(a) is not zero but is small compared to |rl, the 

terms in which r(a)  appears have huge coefficients. 

"Expansions" are also given in the form produced by the new 

technique. These expansions arc not useful until converted into 

bounds, since they are not in terms of a perturbation r but rather 

depend on the unknowns a or ß, and on x, which is defined below 

in terms of an orthogonal perturbation. 

Table VII.2 shows bounds for the changes in the zeros based on 

the expansions. The table gives both "crude" bounds, which reflect 

the simplest approximations that come to mind, and "best possible" 

bounds which reflect 2 finer analysis. An automatic symbol manipulator 

might produce rath*»* . ude bounds while the best possible bounds would 

likely be produced by a human analyst. 

IdSH&J 
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.♦ 

The bounds for £ are not of much interest. The bounds for a 

reflect the seme difficulties as the Taylor or Puiseux series from 

which they were derived. The interesting part of Table VII.2 shows 

bounds for small A based on the revised expansion techniques dis- 

cussed in the previous section. The important improvement is that the 

bound for fo-a| is now independent of the direction of r and all 

the coefficients are of modest size. Furthermore the first two terms 

are the same as the best classical bound. The new technique may be 

used for bounding until A becomes comparable to |a-ß|. 

Thus this example vindicates the approach advocated in the previous 

section. The rest of the current section provides the details of 

computing Tab es VII.1 and VII.2. Those details provide convincino 

evidence that practical exploitation of the new expansion technique 

requires a sophisticated symbol manipulation system. 

The bounds computed by Smith's method [42] are somewhat larger 

than those in Table VII.2. In particular, that method indicates 

|a-o| < 1.32A1/2 + 0(A) . 

Details of Expansions 

We first construct the expansion from p. If we consider a per- 

turbation ef(r) to (T-aJq.(T) we find, according to (2.5), that 

the perturbed zero 

where 

Of * o^ +x(a1)e + x(ai)x'(S^)e +• 

x(x) E -r(T)/qt(t) . 

I 

^&JSSJK 
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Thus if   i = 1    then   ^(T) * (T-612)(T-&3);   a3 = g.    Also 

xC^) = -f(a1)/(a1-a2)(a1-a3)   , 

x'(S) - HSi)(2arva3)       ^,(ai} 

i    ((sra2)(ara3))2   cs1-a2)(a1-a3) * 

We may represent the polynomial r by the value of r and its deri- 

vatives at a, or by its coefficients. Using coefficients, 

A #  »     A   2     A        A 

r(x) = r-jt + r^T + r3 , 

/V./V.      A  Ä £      A  A        A 

rUj) ■ r^ + r2^ + r3 , 

r'(a.|) ■ 2f1o1 + r2 . 

Finally let e •* 1 to obtain a Taylor series in the coefficients of r. 

Notice that in the first order term those coefficients appear linearly, 

in the second order term they appear quadratically, etc. Substituting 

numerical values yields 

5- I- .25r(ß) + .25?(ß){.25?(6) + .25r'(8)> + 0(?3) , 

a, = S1 + ZWr{a})  + 204f(a1){83282f(ai) + 204r'(a1)} + 0(r
3) , 

a2 = a2 - 204f(a2) - 204r(S2){83386r(S2) - 204?'(c^)} + 0(r
3) . 

The expansions for a, and cL look unlikely to converge for other 

than small r; in fact there is a polynomial p with a double zero 

at distance Sri * 1.7E-6. 

We now consider expansions from 

P(T) = (x-a)2(T-ß) 

with a = 1 and 8 ~ -1. We will compute the effect of a perturba- 

tion r(t) = P(T)-P(T) on a and 8. For ß, following (2.5), 

tSBSLl 
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define 

so 

Then 

X(T) = -r(x)/(T-a)2 

x.(T).iEl^--J^ll. 
(i-a)        (r-a) 

x(ß) = - ]r(ß)  , 
and 

so 

x'(B) ■ - Jr(ß) - Jr'(ß) , 

5=6- |r(ß) ♦ ^r(ß){r(ß) + r'(ß)} + 0(r3) . 

Following (2.6) in corresponding fashion for   a,   define 

X(T) - -r(T)/(T-ß) 

so 

and 

Then 

Finally 

(T-B)2     tT-BT 

X"(T) « . ^I±LL + 2rJir) . r^rJ 
(T-B)3     (T-BT     ^ 

x(o) ■ - jr(o) , 

x'(a) -Jr(a) -Jr'(a)  , 

x"(a) - -lr(a) ♦ Jr'(a) Jr"(o) . 

a ■ a ♦ /]rW* + jr(a) - Jr'(a) + WE^j" x"(o) 

(jr(q)-r'(g))2 

8/Jr(a) 
♦ O(r')  . 

ill m>t i—ii't  st    mm"»!. 
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Bounds from Expansion 

The changes in zeros may be crudely bounded in a straightforward 

way: 

|ß-ß| < .25|r(ß)| +^|r(ß)|{|r(ß)| + |r'(ß)|} + 0(r3)  . 

But    |r(ß)| < ll(ß2 ß l)|.|rl < r/5 h.    Similarly 

|r'(ß)| < B(2ß 1 0)BBrD < & A.    So 

|S-B| - .433A + .430A2 + 0(A3) . 

The bounds for |ßVß| and |a-a| are similarly derived. As we have 

seen, bounds for |a-a| independent of r do not exist. 

We can improve on these bounds by taking a little care. For 

instance, the second term in the expansion for 8-ß is 

r(ß){r(ß) + r'(ß)}/16 . 

o 
Writing r(x) ■ r.T + »"2T + r3 we find that term becomes 

(rrr2+r3^"rl+r3)/16 . 

Then the question is: how large can 

l(r1-r2+r3)(-P1+r3)|/16 

2 2 2?? 
be, subject to the constraint   Irl   * )rJ   + Jr-I  + frJ    * A   ?   This 

problem in non-linear optimization can be solved, for instance with 

a Lagrange multiplier, to find that the desired maximum is    .0776A . 

Similarly the second term in the expansion for   a-a   is 

J<Jr(a)-r'(a))  . 
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While we could bound the term as 

^|r(a)| + |r'(a)|) </3A/8 + AA/4 = .776A , 

we do better to observe that r(a) = r, + r„ + r. so we wish to maximize 

jH.5vJr2+f3| < JiC-1.5   4^>|| 
v 
^r3- 

< (/TT/8)A = .415A . 

Bounds from the New Technique 

Now consider how the zeros change when subject to perturbations 

of the form discussed in section 6. First, p is perturbed to 

p(i) = (T-ä)2(r-g) 

by movement along the manifold. Then, an orthogonal perturbation 

6Xe = 6X((a*)n_1 (a*)n"2 ••• a* 1) 

is applied. The total perturbation should be commensurate with A 

which to simplify matters will be taken to be no larger than 10 . 

Corresponding to the bound Irl <_ A for the conventional expan- 

sion we have (6.1): 

6X 

! 5q 

6a 

6X * 6X 

5q H 6q 
6a 6a V — J 

<  A' 

..smmm,. i—niL.a—si 



To compute the components of H, note 
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AW_1A* = e *e = 3 , a a 

So 

' 
i 0 ' 

p
m-l" 

-1 1 

-1 . 

i 

'   2 -1 ' 

m-i     m- = 

. -1 2 
J 

r  l 
' 

V 
' l " 

> 
• 

q - 
.1 . 

> 

Xq = 

J . 
t 

P,Xq = ( ) , 

q*Xq = \ • » 

P1*XP1 = ( > . 

r 3 0 0 " 

H » 0 

o 
6 

0 

0 

8 

• 

We will compute the best possible bounds from H, but for the crude 

bounds we will use (6.2). Then v * 0 so (6.2) becomes 

|6X| < (/3"/3)A , 

|5q| « |6B| < (^/6)A , 

and    |6a| < (^?/4)A . 

In the usual case when deg q > 1, 56 is a Taylor series in eq. 

The variation in the double zero a and the simple zero 8 is 

thus easily bounded for movements along the manifold. Now we turn to 
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the effect of the orthogonal movement in the direction 6Ae\ The 

effect on ß may again be deduced from (2.5); let 

X(T) = -SX y(5*t) 
n-j 

(T-S)' 
so 

Then 

and 

X.,T,. n{gaa^.£ZteJiig^±i) 
(T-5)       (T-5)' 

x(ß) = -6A(I(5*B)n"j/(ß-5)2) 

x.(g,. mm^r«*i(»-m*$r5~\ 
(B-5)3      (g-5)2 

Since |o-o| < A and |ß-ß|<A and A < 10 , in the bounds that 

follow no harm is done by substituting a for 5 and ß for ß, 

since the resulting coefficients will only be given to 3 figures. For 

larger A more care must be taken. In particular, if the perturbation 

along the manifold is extended far enough to reach the next higher 

manifold, where a s B, the bounds below will be utterly wrong. 

To get a crude bound, we would use 

|x(ß)| < |6A|ß|ä*ß|n"j/|ß-S|2) -||6M <5A. 

Then 

Since 

we get 

|x' (0)1 £|6A|-f <T* 

.g-ß| < |x(B)| ♦ |x(S)||x'(B)f ♦ 

< (/37«)A + 3/8A2 + ••• . 

|8-8i • 1681 < W6)A , 

^yäw^jBBfcÄuäSüÄft. 
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I i 

< .841A + .375A2 + 0(A3) . 

For a more refined bound, just be more careful: 

x(ß) = - \?>\   , 

x'(ß) = 0 (+ higher order terms) . 

x'(ß) is exactly 0 when a = a and ß = ß, and has higher order 

otherwise. x(ß) also has second order terms which we have not 
terms 

bothered to extract 

S-ß=ß-ß+ß-ß=-6q 

* - 6q - jt\  + 0 + *• 

+ x(B) + x(ß)x'(ß) + ••' 

i xn h\\   may be obtained from the condi- 
A best possible bound for |-Sq-^I m* 

tion B6hIH < A: 

,.}-I.)(S]|<I«4-^IHI[£|I 

The corresponding 

cated: 

* 1 m 
1  !5hlH tV

1^- 

OJ 

computation for a is slightly more compli- 

l(T) . -5X(I(a*T)n-j)/(T-B) 

l'(0 -  i'-'s 

'{-) 
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Substituting we find 

x(ä) = -6XQ|5n"j|2/(a-ß))  , 

(a-ß)Z      (5-ß) 

x"(5) = .w-(5*)2I(n-j)(n-j-1)lan-J-2|2 25*y(n-,T)lan-J-y 

<-»        '~~^F 
+ 2ll5

n-jl2 

(a-ß)3 
} . 

Then to get a crude bound, 

|x(5)| =f|6X| < (^)A , 

|x'(5)| <  |6A|(|+|) <f^A , 

|x-(S)| <|5X|(1+|+|) < (1^)A . 

Since 

then 

o-a 

or 

,V2 a-a| < .93U,/Z + 1.003A ♦ .663A3/Z ♦ 0(A2) . 

L«av-  jr   . 
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To get the corresponding best possible bounds, note that 

221 

x(5) = - 2<5A » 

x'(5) - - |rSA , 

x"(S) = ^A      . 

Then for the second term   6a + 2*'(5)   we have 

\6a-h\\  <  11(4 0 1)1  L = 4^A   • 

For the third term, 

! 

^H(X»(5) + (^|J!)| . i^l}-^!«!3« < .«W* 

it an ■ 



CHAPTER VIII 

EXPERIMENTAL METHODS 

1.  Introduction 

In the next chapter experimental results will be given which 

vindicate the theory of previous chapters. After that we will pre- 

sent experimental results for a class of polynomials more difficult 

to understand. 

In the present chapter we describe how the nearest polynomials 

with given multiplicity configurations were found. Then we explain 

the tests made to assure the validity of the results. Finally we show 

how to contrive test problems with known answers. 

Experiments were carried out on the CDC 6400 at the University of 

California, Berkeley. Coding was in the FORTRAN language for the 

University of Washington RUN compiler. Although most of the codes 

usually perform satisfactorily in the stated environment they are not 

presently in a portable form that would work reliably in other envi- 

ronments. Consequently a detailed discussion and listing of these 

codes is not included here. 

222 
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2.  How the Equations were Solved 

Chapters 111-V presented various equations to be solved for 

solutions z,   corresponding to nearest polynomials with one or more 

multiple zeros. Expressions were usually obtained both for a function 

and its partial derivatives so that Newton's method could be applied. 

To use any iterative method, however, startinq guesses must be 

supplied. 

Usually the starting point was taken to be a zero of the appro- 

priate derivative. Thus, if the nearest polynomial with a double zero 

was sought, a starting point would be chosen from among the zeros of 

the first derivative. One might try to use the zeros of the original 

prynomial, but the zeros of the derivative seemed more often to lead 

to faster convergence. 

In order to maximize the probability of first finding the globally 

nearest polynomial with the desired multiplicity configuration, the 

starting points were tried in a definite order. That order was fixed 

by computing the distance to the nearest polynomial with that start- 

ing point as a double zero. That distance is an upper bound for the 

distance to the manivold from that starting point. The starting points 

with the least upper bounds were used first. 

The same criterion for choosing among starting points could be 

used if the starting points were the zeros of the original polynomial. 

Ir. tMs case, however, it would be equally appropriate to rank the 

starting points according to their condition numbers. 

Once a starting point was chosen, Newton's method was used in all 

but one instance. That case exploited the fact that the equation for 

the nearest polynomial with a double zero always has a real solution 



224 

between two real zeros of a real polynomial. Those two real zeros may 

be used as starting points for a secant-like iteration for ;; among 

many such iterations Brent's [2] is a well known recent one. Brent's 

method was used to quickly locate real solutions whenever appropriate. 

In order to terminate the iteration an error bound on the func- 

tion evaluation was computed. When the function whose zero was sought 

was reduced below its error bound, the '--.rent iterate was accepted as 

a zero. These error bounds were usually computed with the aid of 

interval arithmetic (24]. The lack of suitable facilities for inter- 

val arithmetic in CDC hardware and software made it necessary to code 

interval operations as subroutine calls -- making the codes for the 

functions virtually unreadable, and thereby providing another reason 

for not publishing those codes here. 

If no solution was found after a fixed number of iterations 

(usually 40) the iteration was terminated and another starting point 

tried. If a solution was found it was added to the list of known 

solutions used to deflate the function, as described in one of the 

appendices. 

When all the reasonable starting points had been tried the 

accumulated solutions were checked for correctness and the correspond- 

ing perturbations analyzed. 

■MH 
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3.  How Do We Know the Answers are Correct? 

The methods just described produce one or more solutions c 

corresponding to locally nearest polynomials with a given multiplicity 

configuration. The next step is to compute each polynomial from its 

S and check that it is indeed an appropriate solution. Because no 

similar computations suitable for comparison have been published, 

extra care was necessary to be sure that the numerical results were 

reliable. 

It must be understood from the outset that in general we can not 

be sure of having obtained the global minimum. With no theoretical 

information on the size of the second derivative or on the number of 

local minima that may exist in a region the best that can be done is 

to obtain as many local minima as possible and examine each. Empiri- 

cally we have never found more than n + 2 local minima while search- 

ing for the nearest polynomial with a single multiple zero, so that 

task is not quite hopeless. Furthermore, whenever one might reasonably 

expect from the nature of a problem that one minimum would clearly be 

much better than the rest, that minimum has always been found approxi- 

mately as expected. An example of such a problem is one in which a 

perturbation is applied to a polynomial having one multiple zero and 

several simple zeros, all well conditioned in the sense of chapter II. 

Thus the perturbed polynomial has simple zeros near the simple zeros 

of the unperturbed polynomial, but the multiple zero has divided into 

several yery ill conditioned zeros. When the computer codes are asked 

to find the polynomial with an appropriately multiple zero nearest 

that perturbed polynomial, they have so far always found a locally 

closest polynomial with a multiple zero near the multiple zero of the 
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original unperturbed polynomial. In the circumstances described, 

moreover, none of the other local minima are competitive in distance. 

Thus it seems highly likely that the best local minimum is really the 

global minimum. 

There is the additional complication that our results are for 

real polynomials and, as we have seen in chapters III and V, it is 

sometimes necessary to solve an extra set of equations for higher 

multiplicity in order to find the global minimum. In our experience- 

with double zeros, only once has a better minimum been found by solv- 

ing the equation for a triple zero. Thus our overall results are 

probably not seriously compromised by failing to check for quadruple 

zeros when searching for triples, or for various higher configurations 

when searching for two or more doubles. 

The reader may wonder why it is so easy to find the s's when 

the starting points are near ill conditioned zeros of a polynomial. 

After all, ill conditioned zeros themselves are almost by definition 

difficult to find. 

The explanation lies in the form in which polynomials are pre- 

sented to our codes, namely as a list of their zeros. If the polyno- 

mials were represented by their coefficients, as they are represented 

to a subroutine to find zeros of polynomials, then the solutions x, 

to the equations we wish to solve would also be ill conditioned func- 

tions of the input data. But since ill conditioned zeros are normally 

recognizable as a problem requiring amelioration only when those zeros 

are in hand, the sensible form for representing that ill conditioned 

polynomial is by its zeros rather than its coefficients. In that form 
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the polynomial may always be evaluated with low relative error, even 

near its zeros. 
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4.  Computed Checks on Results 

Once a 5 has been found, we can compute the perturbing polyno- 

mial q(i) by an equation such as (III.6.4). Then p(i)+q(T) should 

be locally nearest to p(t) and should have a multiple zero ? of 

the intended multiplicity m, or several ?'s of appropriate multipli- 

cities if that was what was requested. 

Analytical errors, approximation errors, coding errors, and 

rounding errors could all cause the results to be other than expected, 

so each assertion about p + q is checked in the codes. 

Note that p + q is never represented by computing the coeffi- 

cients of p + q. Since the coefficients of q are usually intended 

to be small perturbations of the coefficients of p, adding them 

together would entail severe loss of significance. Therefore to 

evaluate (p+q)(n) at a specific n, compute 

p(n) *   n (n-oj 
1=1  1 

and 

q(n) ■ I q.n1 

1-1 J 

n-i 

and then add p(n) and q(n). 

Using this evaluation scheme our first task 1s to check the asser- 

tion that c is an m-tuple zero of p + q, i.e. 

P(k)(;)+q(k)(c) - 0 ,  k - 0 m-1 . 

We do not expect that equation to be satisfied exactly on a finite 

precision computer so we compute error bounds by interval arithmetic 
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» 

and ask only that 

.(k)(?) + q
(k)U) 

be within its error bound. That proves that p + q satisfies the con- 

straint of lying on the manifold of polynomials with m-tuple zeros. 

The next assertion to be checked is that p + q represents a 

stationary point on the manifold with respect to flqj. The analysis 

of chapter III shows that this is the case if either the last Lagrange 

multiplier vanishes or the multiplicity of z,   in p + q is at least 

one greater than requested. For our codes the last Lagrange multiplier 

is usually forced to be zero in the solution process for z,   and q. 

If we wish to examine other stationary points which, as we have shown, 

can not be minimal with respect to complex perturbations, we check 

that one of the stationarity conditions is satisfied. 

After checking stationarity we turn to minimality of 

Minimality may be checked by examining the Hessian matrix of second 
2 

derivatives of Iql . Given any fixed z,,    there is a unique q 

closest to p such that p + q has an m-tuple zero z,.    Thus flqll 

could be regarded as a real function of two real variables, Re z,   and 

Im ;, for which partial derivatives can be computed to provide a 2 by 2 

Hessian matrix. Alternatively the method of section III.10 could be 

used to compute a Hessian matrix for the coefficients of q and the 

C's which are now regarded as independent except for constraints. To 

simplify computation only real changes in q and z,   were considered 

in computing the constrained Hessian of dimension n + 1 -m. 

Using either Hessian, minimality could be checked by computing 

the signature. Actually the complete set of eigenvalues was computed 
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to ascertain the shape of the minimum. Minimality corresponds to all 

eigenvalues positive; maximality to all negative; other configurations 

correspond to saddle points. 

After the checks listed above, the other zeros of p(T)+q(r) 

were computed, assuming that the m-tuple zero c was known. Then the 

n zeros were used to reconstitute the coefficients of a polynomial 

whose coefficients should be close to those of p(T)+q(t). The 

explicit coefficients of p + q were computed for use in this check 

only. The maximum relative difference was noted and flagged if larger 

than roundoff error level. If no flag was noted then the zeros of 

p + q were assumed to be reliably computed and their condition numbers 

were calculated. Of special interest was the condition number of the 

multiple zero c which should have been much smaller than the condi- 

tion numbers of the ill conditioned zeros it replaced. 

When computing q and Aql in cases where we expect the last 

Lagrange multiplier to be zero, we usually forced it to be zero while 

solving the linear equations for q. We could, however, solve a 

system of linear equations of dimension one larger, Then, because of 

rounding error, we expect the last Lagrange multiplier to be small but 

not zero. So as a check we re-computed q and Iql using the non- 

zero multiplier. The two values of Iql are compared and flagged if 

they differ by more than a few units in the last place of precision. 

Finally a number of random small perturbations of c were made 

and the distance to the nearest polynomial with the perturbed c as a 

multiple zero was computed. Since the original c was alleged to be 

a minimal point, a message was printed if any of the nearby polynomials 

were significantly closer to p. 
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All the experimental results to be presented in this chapter and 

the next satisfied these checks unless otherwise stated. Thus there 

is a basis for confidence that the various complicated equations that 

were solved for one or more c's were in fact formulated and solved 

correctly. 

sa^ 



232 

5.  Setting Up a Problem with a Known Solution 

While developing computer codes it is sometimes desirable to 

solve a problem whose answer is known. Although it is not known how, 

for instance, to set up a polynomial such that the globally nearest 

polynomial with an m-tuple zero has the m-tuple zero we specified in 

advance, it is a simple matter to set up such a polynomial so that a 

locally nearest polynomial has that specified m-tuple zero. 

One's first thought might be to start with a trivial problem whose 

solution is known and apply a random perturbation. This is done for 

some problems described in the next chapter. For instance, a small 

random perturbation may be applied to the coefficients of a polynomial 

with a double zero to obtain a nearby polynomial with two ill condi- 

tioned zeros. Then the computer codes find that the nearest polynomial 

with a double zero has a double zero near the one we started with. 

Figure VIII.1 shows why the double zero is not the same; a perturba- 

tion in a random direction is not generally "orthogonal" to the sur- 

face. The change in the multiple zero is usually commensurate with 

the size of the perturbation when the multiple zero is well conditioned. 

It is possible to set up a perturbation so we return to a speci- 

fic multiple zero, however. Recall the equation, (III.6.2), to be 

solved for the polynomial nearest p with an m-tuple zero c: 

f(;,p) « det(Ap ; AW'Vz) = 0 . 

Z is a constant truncator matrix, W depends only on the norm, and 

A and A depend only on ;. 

Normally p is given and we seek c by solving a highly non- 

linear equation. But now we wish to find p given ;  Frora the 
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Figure VIII.V p has a multiple zero. A random perturbation 
to p produces p. p + q is the polynomial with 
a multiple zero closest to p. 
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> 

properties of determinants it is apparent that f(c,p) is a linear 

functional of the vector p, so f(c»p) = u *p for some u * which 

depends on i   but not p. Then to find such a p it is only neces- 

sary to obtain one of the members of the (n-1) dimensional subspace 

of solutions of u *p = 0. 

As an example, suppose we wish to start with a polynomial p 

with a double zero at a, so f(a,p) - 0. We then want to find a q 

such that p + q has a locally nearest polynomial with a double zero 

at a. Presumably that nearest polynomial would be p if q is not 

too large. 

We find then that f(a,q) = 0 is the requirement on q. We can 

find such a q by letting q. be a polynomial with random coeffi- 

cients and q, be the constant polynomial whose value is 1. Then 

qBqo-f7^Tqi 

is the polynomial we seek. It may be verified that f(a,q.) f 0 for 

m « 2 or 3. 

Then we may apply the computer codes to p + q to verify that 

they do find a locally nearest polynomial with an m-tuple zero a. 

We could impose an even more stringent requirement: that the 

closest polynomial to p + q with a multiple zero be p itself. This 

is just as easy x.o arrange. Recall the notation from chapter III for 

finding the polynomial p + q with a multiple zero c nearest a poly- 

nomial p. For our present purpose p * p + q and p + q * p so 

q * -q. But 

q « W1*** 
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for some   m-1    dimensional vector   Si   of Lagrange multipliers.    So our 

recipe is:    choose any random   m-1    dimensional vector   u   and let 

p + q = p - W" Ä*u 

be the perturbed polynomial. Then we may verify that the equation 

for ?, 

det(Äp j AW'Vz) = 0 , 

is trivially solved when 5 = a, for then 

Äp = - AW_1Ä*u 

= - AW"1Au 

where 
u 

J 
The matrix whose determinant we seek is just 

■1 AW"'A*(u I Z) 

and the bottom row of the rightmost factor vanishes as does the 

determinant. 

When solving for Lagrange multipliers £, 

AW 'A** « -Ap » AW 'A*u , 

and since the rows of AW" A* are linearly Independent, l ■ u as we 

hoped, and q a -q. Thus 

{q|q--W"1Ä*u} 
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is indeed the subspac^ of perturbations of p for which p is a 

locally nearest polynomial with an m-tuple zero. 



CHAPTER IX 

NONPATHOLOGICAL EXPERIMENTAL RESULTS 

1.  Introduction 

We turn now to presentation of some results of calculations per- 

formed on specific polynomials. The results in this chapter generally 

tend to vindicate the theory. 

Calculations were usually based on the methods described in the 

previous chapter. The norms used were weighted least squares norms 

intended to minimize relative changes in the coefficients of the 

starting polynomial. Thus if the monic starting polynomial of 

degree n were 

n n 
P(T) * n (T-O.) = T"+ I p. 

i*l   1     j=l J 

n-j 

then polynomials 

q(t) - I q^' 
j-1 J 

n-j 

would be sought such that p + q had the desired multiplicity struc- 

ture and 

.2. " i«5« I,«,!«/ 

was minimized. Usually w. * 1/jpJ  but sometimes w. 

was used Instead, where 

6(T) i n(T-loJ) . 
1-1    1 

l/|p/ 

237 
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The latter norm is applicable when some of the p.'s vanish. 

The choice of norm also affects the condition numbers. Generally 

condition numbers for relative changes in the zeros are used. 

In the first cases the "right answer" is obvious and the codes do 

indeed recover that answer. 
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2.  n-tuple Zeros 

Equations for finding the nearest polynomial with an n-tuple zero 

are given in section III.2. The present example was created by ran- 

domly perturbing a polynomial whose  quintuple zero 1 has condition 

number .135. A perturbation of norm .749E-12 was applied in a 

random direction to create p whose zeros are 

.99557908 ± .32081885E-2 i 

1.00168511 ± .52020041E-2 i 

1.00547160 . 

The condition numbers of these zeros vary from .353E+10 to 

.357E+10. The equations for finding the nearest polynomial with an 

n-tuple zero were solved by Newton's method, starting from the arith- 

metic mean of the five zeros of p(r). The result was that the 

nearest polynomial with an n-tuple zero had the n-tuple zero 

1.000000000000007 with condition number .135. 

Corresponding results were obtained for similar polynomials of 

degrees 8 and 20. Although the n-tuple zero is easy to find, the 

nearest polynomial with a real double or triple zero is sometimes 

difficult to locate, especially if n is odd. There are usually 

numerous nearby polynomials with a complex double zero, and for some 

of these may be found a nearby real polynomial with a complex conju- 

gate pair of double zeros. 
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3.  Returning to a Double Zero 

The next polynomial has six zeros -2, -1, 1, 1, 2, and 3. The 

worst conditioned of these is 3, with condition number 43.4. The 

double zero at 1 has condition number 5.04. 

A random perturbation of norm .438E-8 was applied, creating a 

polynomial p: 

Zero Condition number 

2.00000000 2.89 

1.00000000 2.91 

.99999998 + .10462513E-3i .557E+5 

2.00000011 19.5 

2.99999992 43.4 

The methods of chapter III were applied to find the nearest poly- 

nomial with a double zero, and a polynomial p + q was soon found 

whose douHe zero at .99999998 has condition number 5.04. HqO = .94E-9 

and the other zeros were not changed by more than .0000007. 

Other locally minimal polynomials with double zeros were also 

found. For instance the next closest one has a double zero at 2.5397 

with condition number 3.85, and the worst conditioned zeros of p + q 

are .952±.158i, with condition numbers 28.6. But IqJ = .385E-2, 

so this perturbation is over a million times larger than the previous 

one. By taking such a large step we manage to decrease the worst con- 

dition number only by a factor of 2, and this perturbation seems much 

less natural than the previous one. 

Similarly when we seek the nearest polynomial with a triple zero, 

we find we must let ilql = .017 in order to reach the polynomial with 
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a triple zero at 1.20. The worst conditioned zero of that polynomial 

has condition number 8.64. 

Thus we find that by forcing a large enough perturbation on p 

we can make its zeros as well conditioned as we want. However in this 

case we find that there is an "obvious" perturbation in which a com- 

paratively small change in p results in a comparatively large improve- 

ment in the worst condition of p's zeros. 

iMMHMMia 
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4.  Returning to a Triple Zero 

We start with the polynomial with simple zeros -2, -1, and 3, and 

triple zero 1. The condition of the triple zero is .797 and the worst 

zero is 3, with condition number 5.52, 

Apply a random perturbation of norm .839E-10 to find p, a poly- 

nomial whose zeros and condition numbers are 

2.00000000 1.21 

1.00000000 .615 

.99980426± .33876727E-3 1 .357E+7 

1.00039148 .357E+7 

2.99999999 5.52 

When we search for nearby polynomials with double zeros, we find 

for instance one with a double zero .99999525 at distance .365E-10. 

The condition of that double zero is somewhat improved to .714E+5 but 

the condition of the third zero near 1 becomes .807E+10. Even though 

we can reach a double zero in a small step, the results are not 

interesting. 

When we search for a nearby triple zero, however, we find that a 

perturbation of norm .495E-10 gets us to a polynomial with a triple 

zero 1.000000000014 with condition number .797. The worst zero has 

condition number 5.52. Comparing to the perturbation to a double 

zero, we find that a not much larger perturbation to a higher multi- 

plicity structure yields a substantial improvement in condition. 

Computer codes for quadruple zeros are not available but it seems 

doubtful that this p could be perturbed to a quadruple zero by a 

further small perturbation. 
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5.  Returning to Two Double Zeros 

The polynomial with simple zeros -2, 0, and 2, and double zeros 

-1 and +1 was perturbed by a random perturbation of norm .332E-7 to 

produce a polynomial whose ill conditioned zeros were 

± .9999999991 ± .562407E-4 i with condition numbers .196E+4. 

A polynomial at distance .143E-7 had a double zero but two 

remaining ill conditioned zeros. There was a polynomial with a triple 

zero at distance .629 with all zeros well conditioned. But the satis- 

factory polynomial had two double zeros at ± .999999997. All zeros 

were well conditioned but the perturbation q was only .219E-7 in 
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6.  Returning to a Complex Conjugate Pair of Double Zeros 

Consider the eighth degree polynomial whose simple zeros are -3, 

-2, -1, and 4, and which also has double zeros at 2±i. The worst 

zero is 4, with condition number 55,0; the condition of the complex 

zeros is 7.98. 

A random perturbation of norm .168E-8 produces a polynomial p 

whose zeros and condition numbers are 

-3.00000000 9.98 

-2.00000000 14.9 

- .99999999 6.12 

1.99982354 ± 1.00012355 i .126E+6 

2.00017652 ± .999876371 .126E+6 

3.99999984 55.0 

When we apply the methods of chapter IV we discover that there is 

a real polynomial p + q with double zeros at 2.000000012 ± .9999999946 i 

with condition numbers 7.98. Iqjl is .459E-9 and the worst zero is 

3.9999993 with condition number 55.0. 

Thus in the case of a complex conjugate double zero we can also 

find the answer when it is obvious. In this case no real double or 

triple zeros were found closer than .001. Of course there is no theo- 

retical basis for asserting that they do not exist — but if they are, 

they must be rather well hidden! 



7.  A Polynomial with Several Pairs of Complex Conjugate Zeros 

Wilkinson presents a real polynomial [34, p. 63] all of whose 16 

zeros are complex, most being rather ill conditioned. Condition num- 

bers range from .878 to .107E+11. 

No real s's were found other than 0, but 7 complex c's corres- 

ponding to complex perturbations were found. All of these complex c's 

lead to nearby real polynomials with complex conjugate pairs of double 

zeros. The closest of these is at a distance of .247E-13 and the 

worst conditioned zero of the perturbed polynomial has a condition 

number of .551E+10. So from the point of view of "explanation," 

clearly some higher multiplicity configuration is required. The value 

of this example is rather that it shows that the codes are capable of 

finding a number of complex conjugate pairs of double zeros when the 

problem is of a nature that several such solutions might reasonably 

be expected. 

In the table below we list the unperturbed zeros a   and their 

condition numbers on the left and, on the right, flql, s, the condi- 

tion of ;, and the worst condition number of the perturbed polynomial. 

Real Imag Cond(a) "ql C Cond(;) worst 

.305E-5 .312 .565E+10 .247E-13 -.884E-5 .312 .110E+8 .551E+10 

.148E-4 .312 .107E+11 .545E-13 -.354E-4 .311 .199E+8 .277E+10 

.471E-4 .311 .646E+10 .329E-12 -.116E-3 .309 .108E+8 .137E+10 

.143E-3 .309 .154E+10 .644E-11 -.417E-3 .306 .196E+7 .168E+9 

•491E-3 .304 .127E+9 .656E-9 -.201E-2 .295 .852E+5 .382E+7 

.232E-2 .293 .233E+7 .111E-5 -.166E-1 .260 •381E+3 .710E+4 

.187E-1 .253 •297E+4 .134E-1 -.121 .162 .483 .222E+2 

.132 .136 .878 .141E+1 0 0 .036 .227E+2 

r. 
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8.  An Uninteresting Polynomial 

In contrast to the previous examples, we consider now a polynomial 

all of whose zeros are well conditioned, just to see how the manifold 

of double zeros appears from a distance. 

Let p be a cubic polynomial with zeros 1, 2, and 3, and condi- 

tion numbers .87, 4.6, and 4.8. For this example we use the uniform 

norm for which all weights are 1. After a lengthy search we find the 

following interesting points: 

% Ilq8     Worst condition 

Double at 2.49244540 
Double at 1.32286845 
Double at 0.0 
Double at -3.20829919 
Double at -1.13700604 
Triple at 1.87492441 

Of these points, 0.0 turned out not to be a stationary point, and 

-1.13... turned out to be a maximum on the real axis, and a saddle 

point in the complex plane. The point 1.87... represents a minimum 

among perturbations to a real zero but a maximum among real perturba- 

tions to a double zero. The other three points are local minima in 

the complex plane. 

This example supports the conclusion in chapter II that absence 

of ill condition implies distance from the manifolds of polynomials 

with multiple zeros. 

.0551 .72 

.152 2.7 

12.53 1.0 

12.57 .15 

13.93 10.4 

57.18 .99E-2 
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9.  Zeros in a Circle 

The next example is a polynomial mentioned by Wilkinson [34]. 

Its zeros lie around the unit circle and are the twenty 20  roots of 

unity. In the uniform norm the zeros are all very well conditioned; 

the real zeros have condition numbers .224 and the complex zeros have 

slightly smaller condition numbers, since only real perturbations are 

considered. Our codes were unable to find any solutions for double 

zeros other than zero or for complex conjugate pairs except by great 

labor, which produced unsatisfactory results. It turns out that 

- _n 
P(T) 5T"-6 . 

8 real and positive, has non-zero solutions c constrained as follows 

for double zeros: 

6/n < |c|n < (n-l)6 , 

arg ; s (2k+l )rr/n ,  k = 0,1 n-1 . 

Thus arg(cn) = ir and if n is even there are no real solutions c. 
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10. Summary 

The results presented in this chapter and other similar results 

lead to the following conclusions: 

1. When there is an "obvious" nearby polynomial of a certain 

multiplicity structure, the computer codes find it. If insufficient 

multiplicity is requested, the codes find a polynomial that is close 

but has some zeros still very  ill conditioned. When too much multi- 

plicity is requested, the codes find a polynomial that is relatively 

far away although all its zeros are well conditioned. When the proper 

multiplicity is specified, the codes find a polynomial which is rela- 

tively close and has all zeros well conditioned. 

2. When there is no obvious reason why a nearby polynomial would 

have substantially better conditioned zeros, the codes do not find any 

such polynomials. 

3. The polynomials that the codes find are indeed critical 

points for Dql and are usually minima. In other words, the answers 

are correct, but the codes may not be able to find all the answers. 

With conclusions like these, based on simple cases, we have some 

basis for confidence in examining a more difficult polynomial in the 

next chapter. 

-■■ '■■' 



CHAPTER X 

WHAT'S WRONG WITH WILKINSON'S POLYNOMIAL? 

!•  Wilkinson's Polynomial 

In [34] J. Wilkinson describes the astonishing ill condition of a 

polynomial whose zeros are the integers from ! through 20. He observed 

that by changing one of the coefficients by less than one part in 

1.0E+15 it was possible to create a polynomial some of whose zeros 

were complex conjugate pairs. 

Our results in chapter II lead us to conclude that this badly 

behaved polynomial must be near the manifold of polynomials with double 

zeros, at least, and perhaps near manifolds cc responding to higher 

multiplicity configurations as well. Since this polynomial is pre- 

cisely defined, we are not interested in "-meliorating" its ill condi- 

tion but rather "explaining" that ill condition if possible. The 

results mentioned in the previous chapter show that ill condition is 

ideally explained by displaying a small pertu bation to a nearby mani- 

fold of polynomials with some appropriate multiplicity configuration. 

We shall see that the experimental results presently available do not 

support any such simple explanation for Wilkinson's polynomial; rather 

they suggest that it is near a place where the manifolds of polynomials 

with hiultiple zeros are especially contorted. 

After examining the well known Wilkinson polynomial we will look 

briefly at its translation to the origin and at another Wilkinson poly- 

nomial which is in some ways the opposite of the first. 

249 
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2.  Coefficients and Condition Numbers for Wilkinson's Polynomial 

Two unusual things about Wilkinson's polynomial are the ranges in 

magnitude among the coefficients and among the condition numbers of 

the zeros. 

The zeros are the integers from 1 through 20. Therefore the 

coefficients are exactly computable, but as a practical matter most 

have so many significant figures that they must be rounded to fit in 

48 bits of a CDC computer word. Consequently the polynomial should be 

considered to be defined by its zeros, and the coefficients are only 

used to compute the weights in the norm on perturbations: 

P(T) = n (t-i) =Tn+ I P.T
n-j 

i=l       j=l J 

lql2 = I Wjhjl2 

This "relative" norm measures relative changes in the coefficients of 

p; we will also present results for the "uniform" norm in which all 

the weights are 1 and which measures absolute changes in the coeffi- 

cients of p. 

Some differences between these norms might be expected due to the 

large variation in those coefficients. In magnitude they range from 

210 to 1E19; they are listed in Table X.2. Thus the corresponding 

weights for the relative norm range from 1E4 to 1E38. 

The ze^os are given in Table X.l with their condition numbers. 

The first condition number is with respect to the uniform norm on the 

polynomial. The second condition number is with respect to the rela- 

tive norm on the polynomial. All condition numbers are for absolute 
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Table X.l 

_..  -  . VIJMUIIIIO I  dll ia ineir Condition Numbers 

Zero Uniform Norm Relative Norm 

1 .368E-16 .187E+3 
2 .946E-10 .355E+5 
3 .173E-5 .234E+7 
4 .226E-2 .778E+8 
5 .620 .153E+10 
6 .591E+2 .198E+11 
7 .257E+4 .177E+12 
8 .602E+5 .115E+13 
9 .845E+6 .553E+13 

10 .763E+7 .203E+14 
11 .466E+8 .572E+14 
12 .199E+9 .125E+15 
13 .607E+9 .212E+15 
14 .134E+10 .278E+15 
15 .212E+10 .279E+15 
16 .241E+10 .:i0E+15 
17 •191E+10 .114E+15 
18 .997E+9 .428E+14 
19 .309E+9 .979E+13 
20 .432E+8 .103E+13 
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changes in the zeros. The condition number for relative changes in a, 

say, may be obtained by dividing the listed condition number by |a|. 

The most striking facts about the condition numbers are 

1) the magnitude of the ill condition of the worst, 

2) the large group of zeros that are nearly as badly condi- 

tioned as the worst, and 

3) the lack of any obvious partitioning into a set of well con- 

ditioned zeros and a set of ill conditioned ones. 

The last fact distinguishes this polynomial from those of the 

previous chapter. There is no obviously best multiplicity configura- 

tion that we should look for. So we will try as many as we can, 

starting from the simplest. 

Before giving the results, it is instructive to attempt to graph 

this polynomial. It turns out to be impossible to perceive all its 

features on one graph, so we present several successive magnifications 

of interesting parts. Figures X.1-X.4 were produced on a Tektronix 4051 

Graphics System. 

It is interesting to note that the symmetry of the polynomial 

about 10.5 is not reflected in the condition numbers, which rpach their 

maximum near 15, depending on the norm. That is because the formula 

in chapter II for the condition number of a zero a has a numerator 

which is a monotonic increasing function of |aj and a denominator 

that depends only on the absolute spacing between a and the other 

zeros. The numerator is a rather rapidly increasing function of |o|; 

for a simple zero, it is 

iia2rj/w. • 
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Intuitively it is hard to understand why the larger zeros should 

be so much more ill conditioned than the smaller ones. Indeed, by 

translating the entire polynomial by -10.5 so that it is symmetric 

about the origin, one can eliminate that part of the anomaly. Wilkinson 

did so and found substantial overall improvement in the condition of 

the zeros. Of course, if that translation were regarded as a pertur- 

bation, its norm would exceed 1 in the relative norm and 1E19 in the 

uniform norm, and we know that remarkable improvements in condition 

often accompany large perturbations. 

We wish, however, to study Wilkinson's polynomial as an untrans- 

lated object. The next section gives our results. Some results for 

the translated polynomial are in a later section. 



3.0E+18 

2.0E+1 8 

254 

1.0E+18 

0 

1.0E+18 L 

0 10 20 30 

Figure X.l. Wilkinson's polynomial on [0,21], 
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Figure X.2 Wilkinson's polynomial on [1,20]. 
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5.0E+13 r 
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-5.0E+13 

-1.0E+14 
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Figure X.3. Wilkinson's polynomial on [3,18]. 
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Figure X.4.    Wilkinson's polynomial on [6,15]. 
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3.  The Nearest Polynomial with a Double Zero 

There are many polynomials with a double zero that are close to 

Wilkinson's polynomial. In the next section we will list some of them. 

In the present section we will just present the facts about the 

closest known such polynomials in each norm. 

In the relative norm the nearest polynomial on the manifold has 

a double zero at 14.499... . The distance llqfl is .11054E-14. The 

double zero and some of the nearby simple zeros are listed along with 

their condition numbers and their condition numbers prior to pertur- 

bation. 

Unperturbed zero and condition 

12 .125E+15 

13 .212E+15 

14 .278E+15 

15 .279E+15 

16 .210E+15 

17 .114E+15 

Perturbed zero and condition 

12.15289 .174E+15 

12.77240 .225E+15 

14.49963 .963E+13 

14.49963 .963E+13 

16.22347 .215E+15 

16.85795 .159E+15 

The coefficients of q are in Table X.2. 

The corresponding distance in the uniform norm is .13481E-9. 

Unperturbed zero and condition Perturbed zero and condition 

13 .607E+9 

14 .134E+10 

15 .212E+10 

16 .241E+10 

17 .191E+10 

18 .997E+9 

13.09030 .753E+9 

13.83087 •123E+10 

15.48653 .325E+7 

15.48653 .325E+7 

17.25351 .205E+10 

17.83934 .152E+10 
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:,, 

In both cases we find that moving to the manifold of double zeros 

improved the condition of the coalescing zeros appreciably, and thereby 

improved the overall condition of the polynomial. But some of the 

nearby zeros actually worsened slightly in condition. Evidently 

moving to an even higher manifold is in order, 

M——I 
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Table X.2 

Coefficients of Wilkinson's Polynomial and of the Perturbations 
to the Nearest Polynomial with a Double Zero 

j PJ 
q., uniform norm q-, relative norm 

1 -210 .13452E-9 -.29637E-15 

2 20615 .86866E-11 -.19697E-12 

3 ,x -1256850 .56091E-12 -.50496E-10 

4 .53327 96400 E+8 .36219E-13 -.62696E-8 

5 -.16722 80820 E+10 .23388E-14 -.42520E-6 

6 .40171 77163 E+ll .15102E-15 -.16922E-4 

7 -.75611 11845 E+12 .97516E-17 -.41346E-3 

8 .11310 27700 E+14 .62969E-18 -.63804E-2 

9 -.13558 51829 E+15 .40660E-19 -.63237E-1 

10 .13075 35010 E+16 .26255E-20 -.40560 

11 -.10142 29987 E+17 .16954E-21 -1.68308 

12 .63030 81210 E+17 .10947E-22 -4.48311 

13 -.31133 36432 E+18 .70689E-24 -7.54344 

14 .12066 47804 E+19 .45646E-25 -7.81487 

15 -.35999 79518 E+19 .29474E-26 -4.79737 

16 .80378 11823 E+19 .19032E-27 -1.64939 

17 -.12870 93125 E+20 .12290E-28 -.29168 

18 .13803 75975 E+20 .79357E-30 -.23138E-1 

19 -.87529 48037 E+19 .5I242E-31 -.64163E-3 

20 .24329 02008 E+19 .33088E-32 -.34188E-5 
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4.  Interesting Polynomials near Wilkinson's 

Tables X.3 and X.4 list a number of interesting polynomials near 

Wilkinson's which have one or more multiple zeros. The first columns 

list the distance to the polynomial from Wilkinson's, IqR, and the 

multiple zeros £. All multiple zeros are double except those marked 

(3) which are triple. In the last columns are listed the worst condi- 

tion number of a multiple zero z,   and the worst condition number among 

the simple zeros. 

Table X.3 is based on relative changes in the coefficients of 

Wilkinson's polynomial. Table X.4 is based on the uniform norm in 

which all the weights are 1. Some of the entries are incomplete; to 

conserve paper some of the computer codes involved did not print all 

details for some of the less interesting polynomials. 

All the polynomials listed represent solutions of equations pre- 

* sented in chapters III-V. Most of the solutions are local minima. 
I 

The likely candidates for global minima in each category are indicated 

1 by *. 

1 There are apparently a very large number of solutions for the 

f cases of 2, 3, or 4 double zeros. To keep computing expenses in bounds 

I it was necessary to discontinue the computation after a certain arbi- 

! trary number, usually 20, of these solutions had been found. Even 

these are not all listed in the tables; some were omitted whose norms 

1 are larger than those listed. 
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Table X.3 

Interesting Polynomials Near Wilkinson's, Relative Norm 

nqn ?'s 
Worst condition numbers 

Multiple zero Simple zero 

unperturbed polynomial .279E+15 

* 1. .110E-14 14.4996 .963E+13 .225E+15 

2. .127E-14 15.5295 .771E+13 .122E+16 

3. .127E-14 13.472 .895E+13 .124E+16 

* 4. .128E-14 13.471, 15.531 .895E+13 .113F+15 

5. .192E-14 12.446 .631E+13 .349E+15 

6. .201E-14 16.562 .444E+13 .573E+15 

7. .202E-14 12.442, 16.563 .629E+13 .196E+15 

8. .376E-14 11.420 .340E+13 .111E+15 

9. .392E-14 12.467, 14.535 .963E+13 .188E+15 

10. .454E-14 17.600 .173E+13 .449E+1F 

11. .454E-14 11.413, 17.600 .337E+13 .825E^14 

12. .485E-14 14.454, 16.543 .977E+13 .185E+15 

13. .615E-14 11.436, 15.573 .751E+13 •156E+15 

14. .889E-14 13.397, 17.587 .886E+13 .120E+15 

15. .956E-14 10.396 .141E+13 .459E+14 

16. .101E-13 12.509, 15.451 .841E+13 .218E+15 

17. .104E-13 11.454, 13.565 .965E+13 •301E+15 

18. .110E-13 11.454, 16.516 .479E+13 .711E+15 

19. .112E-13 13.573, 16.513 .980E+13 .120E+16 

*20. .112E-13 11.451, 13.572, 16.513 .980E+13 .224E+15 

21. .131E-13 10.407, 16.612 .417E+13 .816E+14 

22. .133E-13 12.527, 17.579 .706E+13 .200E+15 

23. .144E-13 11.468, 14.361 .108E+14 .201E+15 

24. .162E-13 18.646 .410E+12 .534E+14 

25. .163E-13 10.381, 18.645 .137E+13 .274t+l* 

26. .176E-13 15.383, 17.570 .944E+13 .240E+15 

27. .182E-13 10.417, 14.668 .106E+14 .214E+15 

28. .197E-13 10.419, 15.378 .968E+13 .307E+15 

29. .197E-13 10.417, 17.571 •186E+13 •874E+15 

30. .197E-13 10.418, 15.373, 17.572 .978E+13 .250E+15 
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Table X.3 (continued) 

flqfi C's Worst condit 
Multiple zero 

ion numbers 
Simple zero 

31. .210E-13 14.708, 17.564 .114E+14 .360E+15 

32. .210E-13 10.412, 14.708, 17.564 .114E+14 .250E+15 

33. •261E-13 12.475, 15.407, 17.565 .881E+13 .231E+15 

34. .264E-13 12.300, 18.638 .597E+13 .619E+14 

35. .272E-13 11.487, 14.417, 16.559 .104E+14 .178E+15 

36. .298E-13 12.496, 14.492, 16.525 .926E+13 .532E+14 

37. .317E-13 9.372 .447E+12 .164E+14 

*38. .341E-13 13.978(3) .482E+12 .431E+14 

39. .343E-13 11.474, 13.514, 15.494 .876E+13 •114E+15 

40. .367E-13 15.038(3) .413E+12 .466E+14 

41. .423E-13 12.921(3) .414E+12 .344E+14 

42. .547E-13 16.105(3) .253E+12 .199E+15 

43. .696E-13 11.868(3) .268E+12 .195E+14 

*44. .110E-12 11.458, 13.531, 
17.549 

15.466, .886E+13 .170E+14 

45. .113E-12 19.710 •440E+11 .555E+13 

46. .118E-12 17.181(3) .104E+12 .136E+14 

47. .130E-12 10.448, 12.557, 
18.617 

14.396, .881E+13 .567E+14 

48. .136E-12 10.464, 12.526, 
16.543 

14.472, .934E+13 .358E+14 

49. .138E-12 8.349 .107E+12 .465E+13 

50. .145E-12 9.417, 13.584, 
17.560 

15.444, .857E+13 .405E+14 

51. .150E-12 10.816(3) .131E+12 .818E+13 

52. .175E-12 10.462, 12.544, 
17.554 

15.440, .822E+13 .225E+15 

53. .299E-12 10.477, 12.501, 
17.519 

14.542, .102E+14 .164E+15 

54. .321E-12 9.443, 12.309, 
15.777 

14.708, .123E+14 .270E+15 

55. .409E-12 18.273(3) .257E+11 .438E+13 

56. .426E-12 9.766(3) .485E+11 .268E+13 

57. .808E-12 7.325 .191E+11 .115E+13 

58. .160E-11 8.717(3) .135E+11 .652E+12 

—_ 
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Table X.3 (continued) 

Dql C's Worst condit 
Multiple zero 

ion numbers 
Simple zero 

59. .285E-11 19.401(3) .283E+10 .719E+12 

60. .652E-11 6.302 .247E+10 .230E+12 

61. .808E-11 7.669(3) .281E+9 .116E+12 

62. .561E-10 6.620(3) .424E+9 .200E+11 

63. .751E-10 5.277 .224E+9 .384E+11 

64. .555E-9 5.570(3) .450E+8 .362E+10 

65. .131E-8 4.252 .135E+8 .633E+10 

66. •822E-8 4.519(3) .320E+7 •609E+9 

67. .381E-7 3.226 .493E+6 .975E+9 

68. .198E-6 3.464(3) .142E+6 .982E+8 

69. .213E-5 2.196 .950E+4 .162E+9 

70. .888E-5 2.404(3) .345E+4 .157E+8 

71. .320E-3 1.160 .720E+2 .389E+8 

72. •976E-3 1.331(3) .366E+2 .426E+7 

73. 1.414 Ö.0 .615E+1 .165E+11 

74. 1.732 0.0(3) •286E+1 .120E+10 

75. 2.19614 -117.314 

76. 2.73772 - 9.579 
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Table 

Interesting Polynomials Near 

X.4 

Wilkinson's, Uniform Norm 

Vs 

*  1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

*10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

*25. 

26. 

27. 

28. 

29. 

30. 

Unperturbed 

.135E-2 

.142E-9 

.183E-9 

.223E-9 

•350E-9 

.57QE-9 

.936E-9 

.294E-8 

.352E-8 

.477E-8 

.723E-8 

•114E-7 

.135E-7 

.159E-7 

.190E-7 

.215E-7 

.247E-7 

.338E-7 

.359E-7 

•389E-7 

.446E-7 

.489E-7 

.602E-7 

.633E-7 

•10SE-6 

.10. ES 

.151E-6 

.156E-6 

.159E-6 

.326E-6 

Worst condition numbers 
Multiple zero  Simple zero 

polynomial 

15.487 

16.524 

14.452 

17.567 

13.419 

18.619 

12.388 

19.691 

11.358 

14.465, 16.537 

13.431, 17.578 

15.449, 17.550 

12.397, 18.625 

11.361, 19.692 

10.329 

13.454, 15.557 

14.387, 18.607 

14.547, 17.515 

13.478, 16.422 

12.414.  .J28 

13.493, 18.597 

12.421, 17.490 

16.341, 18.589 

12.431, 14.643 

16.025(3) 

14.948(3) 

9.300 

13.877(3) 

17.112(3) 

12.811(3) 

.325E+7 

•271E+7 

.258E+7 

.148E+7 

•156E+7 

•471E+6 

.645E+6 

.664E+5 

•189E+6 

.271E+7 

•159E+7 

.327E+7 

•190E+6 

•384E+5 

.333E+7 

.261E+7 

.299E+7 

.306E+7 

.262E+7 

•177E+7 

.172E+7 

.835E+4 

.944E+4 

•529E+4 

.724E+4 

.477E+4 

•385E+4 

•241E+10 

.152E+10 

.295E+10 

.281E+10 

•186E+10 

.120E+10 

.624E+9 

.417E+9 

•126E+9 

.106E+9 

.856E+9 

•137E+10 

.117E+10 

.121E+9 

.219E+8 

.165E+10 

.911E+9 

.186E+10 

.177E+10 

.955E+9 

.159E+10 

.I67E+10 

.440E+9 

.342E+9 

.319E+7 

.212E+9 

.214E+9 

.901E+8 
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k 
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Table X 4 (continued) 

llqB S's Worst condit 
Multiple zero 

ion numbers 
Simple zem 

31. .398E-6 1&:216(3) .158E+4 .445E+8 

32. .972E-6 11.747(3) .143E+4 .262E+8 

*33. .120E-5 13.451, 16.372, 18.585 .326E+7 .198E+10 

34. .127E-5 12.442, 14.592, 17.539 .312E+7 .197E+10 

35. .186E-5 8.271 

36. .192E-5 13.485, 15.496, 17.528 .309E+7 .245E+9 

37. .206E-5 19.358(3) .226E+3 .251E+8 

38. .208E-5 11.396, 15.820, 18.596 .520E+7 .418E+10 

39. .221E-5 13.416, 15.638, 18.574 .385E+7 .193E+10 

40. .221E-5 11.397, 16.273, 18.598 .481E+7 .376E+10 

41. .239E-5 12.461, 15.384, 17.579 .364E+7 .128E+10 

42. .301E-5 12.457, 14.533, 16.469 .270E+7 .107E+10 

43. .337E-5 12.460, 14.522, 18.581 

44. .379E-5 12.468, 16.428, 18.575 

45. .417E-5 10.685(3) .368E+3 .513E+7 

46. .440E-5 14.563, 16.439, 18.573 

47. .496E-5 12.492, 15.530, 18.558 

48. .502E-5 11.411, 15.564, 17.492 

49. .531E-5 11.420, 14.116, 18.648 

50. .746E-5 11.428, 14.255, 16.742 

51. .768E-5 11.429, 14.269, 17.335 

52. .896E-5 11.431, 13.597, 15.311 

53. .948E-5 13.605, 15.299, 19.668 

54. .265E-4 9.625(3) .637E+2 .657E+6 

55. .309E-4 16.019, 17.181, 19.646 

56. .378E-4 7.242 .255E+2 .252E+5 

*57. .520E-4 12.447, 14.547, 
18.570 

16.447, •274E+7 .382E+8 

58. .252E-3 11.446, 13.567, 
18.564 

16.444, 

59. .259E-3 8.565(3) .718E+1 .526E+5 

60. .327E-3 11.455, 13.528, 
18.537 

15.512, 

i*' 
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Table X.4 (continued) 

llqll C'S Worst condition numbers 
Multiple zero     Simple zero 

61. .340E-3 11.468,  14.434, 
18.556 

16.495, 

62. .728E-3 12.580, 14. 
19.645 

355, 17 039, 

63. .141E-2 6.213 .757 .132E+4 

64. .4.6E-2 7.504(3) .495 .361E+4 

65. .113 5.183 .106E-1 .397E+2 

66. .120 6.444(3) .191E-1 .198E+3 

67. 7.24 5.382(3) .355E-3 .970E+1 

68. 25.3 4.152 .539E-4 .193E+1 

69. 1161.4 4.318(3) .254E-5 .474E+0 

70. .256E+5 3.120 

71. .770E+6 3.251(3) 

72. .331E+9 2.085 

73. .525E+10 2.181(3) 

74. .679E+15 1.062 

75. .144E+16 1.140(3) 

_J 
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5.  Discussion of Results 

Apparently Wilkinson's polynomial lies near a thicket of inter- 

secting branches of the manifold of polynomials with a double zero; 

see Figure X.5. Although there is a unique point on this manifold 

closest to p, there are other locally closest points in different 

directions that are not much further away. In turn the self-inter- 

sections of the manifold, which form the manifold of polynomials with 

two double zeros, may be found not much further from p than the 

first manifold. And by steps that are increasingly larger, but not 

overwhelmingly so, it is possible to obtain 3 or 4 double zeros or a 

triple zero. 

Perhaps the polynomials whose zeros are the integers from 1 to n 

form a family akin to the finite segments of the Hubert matrix [11]. 

These ill conditioned matrices have the property that there is no 

obvious perturbation to a matrix of lower rank that results in a per- 

turbed matrix of satisfactory condition. For large n, rather, there 

is a sequence of possible perturbations to nearest matrices of rank 

n-1, n-2, etc. Each perturbation in this sequence has the property 

that it is neither much larger than the previous perturbation nor much 

smaller than the next. Furthermore the corresponding sequence of 

nearest matrices of rank n-1, n-2, etc. has the property that each 

matrix is somewhat better conditioned than the previous but somewhat 

less well conditioned than the next one. Thus the ill condition of a 

Hubert segment can not be satisfactorily "explained" as due to a 

small perturbation of a well conditioned matrix of lower rank. 

If an analogy with the Hubert segments is appropriate, then 

Wilkinson's polynomial can not be satisfactorily "explained" by means 
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of the numerical methods described in previous chapters. A satis- 

factory explanation would entail an understanding and description of 

the geometry of the manifolds of polynomials with multiple zeros and 

their intersections. 
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Figure X.5. A mental picture of the manifold thicket 
surrounding Wilkinson's polynomial. 
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6.  Numerical Results for Translation 

Here we summarize some results for translating Wilkinson's poly- 

nomial. The zeros of the translated polynomial are ±0.5,±1.5,...,±9.5. 

In the uniform norm the worst conditioned of these are ±8.5 with con- 

dition numbers of 72, which are well enough conditioned for most pur- 

poses. In contrast the condition numbers for ±0.5 are .877E-12. 

The nearest polynomial with a double zero had t, = ±7.979 and 

Iql = .437E-2. Only the condition of the coalescing zeros was improved 

significantly, to .402. 

Thus in this norm the effects of translation go much farther 

toward "amelioration" of ill condition than do any of the movements 

to manifolds of multiple zeros. 

When the translation to an even polynomial is carried out, some 

of the coefficients in the translated polynomial vanish. Thus, in the 

norm that measures relative changes in coefficients, some of the 

weights become infinite, Some of the computer codes do not handle 

this case properly so only partial results are available. 

The worst zeros now are ±7.5 with condition numbers .127E+5. The 

nearest polynomial with a double zero appears to be a polynomial with 

two double zeros at c s ±6.979. Two double zeros are to be expected 

since the infinite weights constrain the perturbation to be even. In 

contrast, only one double zero was obtained for the uniform weights. 

Numerical difficulties prevented accurate determination of Iql. 

The difficulties arose from the fact that the code expected only one 

double zero so that the other one was poorly determined as two single 

zeros. The codes for two double zeros found ; = ±8.201 with 



272 

llqfl = .247E-4   but tl?y seem to have missed the polynomial with 

? = ±6.979. 
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7.  Zeros in Geometrical Progression 

In [34] Wilkinson also discussed the polynomial of degree 20 

-1 -2    -?f) 
whose zeros are in the geometrical series 2 ,2  2  . From one 

point of view these zeros are all remarkably well conditioned despite 

their apparent crowding near zero. Thus just as the first polynomial 

was ill conditioned yet free from clustering in its zeros, this second 

polynomial seems well conditioned despite what seems to be extreme 

clustering. 

For this polynomial, however, all depends on the point of view. 

Whereas the first polynomial was ill conditioned whether uniform or 

relative perturbations were considered, the second is only well condi- 

tioned when relative perturbations are at stake. 

When relative changes both in the coefficients and the zeros are 

considered, the worst zero is 2~  and its condition number is 65.7; 

the other condition numbers are remarkably similar, the best being 

8.43. In contrast, when absolute changes in the coefficients and zeros 

-19 
are at issue, the worst is 2   with a condition number of .109E+59; 

the best is 2"  with condition number .210E+7. In the uniform norm, 

then, this polynomial is far worse conditioned than the better known 

one with a linear distribution of zeros. 

It should be realized that the coefficients of p range from 1 

to 1E63 in magnitude. With such a wide range of magnitudes of both 

coefficients and zeros, numerical problems made it difficult to obtain 

meaningful results. What results were obtained frequently failed some 

of the tests described in chapter VIII. Since floating point underflow 

is not detected by the CDC 6400 and overflow is known to have occurred, 

we will not discuss these possibly contaminated results. 



CHAPTER XI 

CONCLUDING REMARKS 

We have given methods for finding nearby polynomials with various 

configurations of multiple zeros. We have exhibited examples to show 

that these methods provide the answer we would expect when the correct 

answer is obvious. 

For a polynomial like Wilkinson's, however, there is no obvious 

answer, and these methods do not provide satisfactory explanations of 

the ill condition of such polynomials. Rather the numerical results 

provide evidence of an inherently complicated structure of the mani- 

fold of polynomials with multiple zeros. 

Finally there are intermediate polynomials for which the "correct" 

answer is no longer so obvious but which do not seem to present so con- 

fusing a picture as Wilkinson's polynomial. For such intermediate 

cases our methods sometimes provide results that seem satisfactory and 

sometimes do not. But it is not yet clear whether "unsatisfactory" 

results are due to defects in algorithms or inappropriate expectations 

about the existence of satisfactory nearby polynomials. 

In each of these areas there is ample scope for further research. 

For the "obvious" cases we would like to be able to specify starting 

points for iterative methods which could be guaranteed to converge 

quickly to the global minimum. 

For the intermediate cases we would like to know simple criteria 

for deciding when, for instance, nearby polynomials with complex con- 

jugate pairs of double zeros may exist. More generally we would like 

to know when a solution c of the equations we wish to solve does not 

exist in a particular region, so that we need not waste time looking there. 

274 
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Sketchy information on where to look for c is known for the 

case of one double zero, but for other configurations the only known 

facts are that the dimensionality of the problem is less than might 

have been thought, because certain Lagrange multipliers vanish in the 

complex case. We would like to have a simple criterion in the real 

case, that will tell us when we may rely on that theorem about Lagrange 

multipliers, when we must check real configurations of higher multi- 

plicity, and when we must check for complex conjugate multiple zeros. 

The new expansion technique discussed in chapter VII provides 

some interesting questions. In how large a region can realistic 

bounds be computed easily? It would be desirable to have a symbolic 

algebra program to provide these tedious bounds automatically. Do 

these bounds have any significant advantages over Smith's [42]? 

A task of a different sort is to render the existing mass of 

algorithmic ideas and devices into mathematical software. The com- 

puter codes with which the research reported here was conducted were 

constantly changing and required considerable experience to direct the 

search and interpret the results. They were dependent on the local 

computing environment in many ways and most likely contain some errors, 

which would probably not affect the results presented in previous 

chapters. 

In contrast, respectable mathematical software is carefully 

specified, written, documented, and tested. Then it is independently 

examined and tested again. The experienced computer programmer now 

recognizes, moreover, that the production of quality mathematical soft- 

ware from its raw materials entails as much effort ©» providing those 
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raw materials. Consequently that production will be deferred to another 

occasion in this case. 

The final, and perhaps most difficult, challenge is to unravel 

the nature of the manifold of polynomials with multiple zeros, partic- 

ularly in the vicinity of polynomials like Wilkinson's. Although 

numerical investigations may sometimes be helpful, probably the prin- 

cipal factor for success will be the investigator's competence in 

algebraic geometry. 

Turning now to a more general point of view, we should recall that 

one reason for studying polynomials is that they are simpler than the 

often infinite dimensional eigenvalue problems they frequently replace. 

Thus the more general problem might be stated as follows: given a 

linear operator, some of whose eigenvalues are ill conditioned, what 

is the nearest linear operator whose eigenvalues, some of them multiple, 

are all well conditioned? 

Ruhe [27], Wilkinson [36], and Kahan [16] have all given bounds 

for the distance to the nearest matrix with a multiple eigenvalue. 

Kahan [17] and Golub and Wilkinson [39] have also surveyed the known 

theory. But there are no known computational techniques which are 

even as reliable as those discussed previously for zeros of polynomials. 

The closest related work 1s that of Kagström and Ruhe [15] on finding 

the Jordan canonical form of a matrix. Otherwise the many refractory 

aspects of the problem remain untouched for future investigators. 



APPENDICES 

1.  Using the Zeros of a Polynomial to Compute Its Coefficients 

Our object is to display the well known algorithm for computing 

the coefficients of a monic polynomial from its zeros. If we are to 

determine the p. in 
J 

n (T-U = T" + l P T
n'J 

j=l J   j=l J 

and we expand directly we find 

over all (?) combinations' 

of the n (-?.)'s taken j 
J 

at a time 

[II (of the (-c.)'s in each combination)] 
J 

We can avoid this n! calculation by building up the coefficients 

recursively. If we have a polynomial 

k      k 
Pk(x) - I p$Tk-j - n (T-CJ ,  p|j ■ l , 

j-o J   j-i  J    ° 

we can form the polynomial of degree k+1 by multiplication by (T-;.+1): 

- iUkTk+1-j- lpkK+1h 
j«0 J j-0 J      K ' 

- kTVk+1)Tk+1_J 

j=0 J 

k-j 
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.k+1 

r       nk 

"ck+lpk j = k+1  , 

pj"ck+lpj-l • j ■ k,k-l, 

1 j = 0 . 

,2,1 , 

We list the coefficients in the order that they could be successively 

computed and overlaid in storage. 

In the case of real polynomials, we wish to avoid complex arith- 

metic by considering complex zeros and their conjugates together. 

Then 

Pk+2(x) = Pk(T).(x2-2(Rei;k+1)T+kk+1|
2) 

so 

.k+2 

i2.k 
'k+1 

2_k 
-2<«*Wp^isk+iiX-i 

, j ■ k+2 , 

> j * k+1 , 

i2_k Pra1PJ-2(Re^)PJ-l + lVllS-2' J-k.....3.2. 
Pl

k-2(Re ck+1) . J-l . 

1 0 . 

It may happen that we are only interested in the last few coeffi- 

cients or the first few. The formulas above may be used for the first 

few coefficients corresponding to high powers of T. 

To find formulas for the last few coefficients, corresponding to 

low powers of T, we redefine the p* as follows: 

pk(T) M I pjr 
j«0 ° 



.,..-. .....1.1--::--,-Vr.n,,. --.   , ^r   . .-.-.y     .. -., «f"*«#lij 

Then 
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.k+1 4   il-H 
L^k+ipo 

- ck+lpj ' J 

k+1   , 

0 , 

and in the case   c^ = ^+1' 

1 j ■ k+2 , 

Pk-1  " 2 Re H+l 
j = k+1  , 

nk+2   - < 
Pj--2-2ReH+lPj-l + ^k+ll2Pj  • 

i - k          2 

-2Re;k+1p5+|ck+1|
2Pi 0 = 1. 

Uk+il2po j « 0 . 

A 
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2.  Simultaneous Evaluation of a PpTynomial and Some of its Derivatives 

Ways of efficiently evaluating a polynomial and its derivatives 

simultaneously from the coefficients have been studied by Shaw and 

Traub [29] among others. 

Rice [26] has argued that, given the zeros c. of a polynomial, 

computing the product 

n 
P(T) ■ n (T-C.) 

J-l   J 

is usually the method of evaluation that minimizes the uncertainty in 

P(T). When the polynomial is evaluated in this way the relative error 

in the final result, due to rounding errors, is always small on a 

properly designed machine. In contrast the relative error of the 

evaluation from the coefficients is usually large when T is near one 

of the c.. 
J 

Furthermore if the zeros are the primary data, rather than the 

coefficients, the attempt to compute the coefficients from the zeros 

will, in the presence of rounding errors, produce wrong coefficients 

which will be the coefficients of another polynomial with different 

zeros. If the new zeros are ill conditioned they may be rather far 

removed from the zeros we started with. 

Therefore we prefer to evaluate polynomials and their derivatives 

directly from the zeros if they are the primary data. Typical expres- 

sions for the polynomial and two derivatives follow: 
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Method N: 

P(T) 

P(T) 

P"(T) 

n 
n (t-cj) 

n 

j = 1 

1 n 

0=1 <T-Cj) 
2" 

Similar expressions for higher derivatives may be found by means of 

Newton's identities which are described in Householder [12]. These 

expressions have the defect, however, that in the presence of rounding 

errors, they tend to have high relative errors which are revealed by 

cancellation at the end. Thus if x t c. in the expression for p"/p, 
J 

the two subexpressions will tend to cancel with subsequent severe loss 

of significant figures. By algebraic manipulation we nay be able to 

find forms for these expressions in which cancellation is not pre- 

ordained. For instance 

n-1 
si * 2 y -M y   -U 

but this expression is not applicable when T 
S
 $.   exactly. 

Therefore it is helpful to use different methods for computing a 

polynomial and its derivatives from its zeros. These methods are 

based on the observation that if 

P(T) ■ n (T-;.) = I p.T 
j-1  J  j»0 J 

n-j P0= 1 , 
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then p(0) = pn> p'(0) * pnl, and in general, pk(0) = kJpn|<. 

Therefore we can evaluate the polynomial and m derivatives at 0 by 

computing the last m+1 coefficients of p from its zeros ?.. 

Moreover we can evaluate p and its derivatives at a by com- 

puting the coefficients of the polynomial whose zeros are £. *cx: 
ü 

Method A: 

p* '(a) * k!(n-k coefficient of polynomial whose zeros are c.-a} 

Another method is based on the observation that 

"■Ä^^-^-^^^-Ä^Ä^- 
Then 

pn-k 

.th a n (-c.)»{ktn coefficient of polynomial whose zeros are —} 

* p(k)(0)/k! . 

So continuing as before, 

Method B: 

p* '(a) » k!p(a){k coefficient of polynomial whose zeros are ——} 

Like Newton's identities, however, this method is undefined If a« c.. 

We might conduct operation counts to help choose from among these 

methods. They all require mn + 0(m ) + 0(n) operations to evaluate a 

polynomial and m derivatives. Therefore we choose Method A since it 

is applicable even when T ■ c^. 

• -■■ ■■■ 
^_ 
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3.  Partial Derivatives of a Deflated Function of a Complex Variable 

When minimizing norms of functions of complex variables we are 

often required to find zeros of non-analytic functions of a complex 

variable. There seems to be little general theory for such functions 

other than that of two real analytic functions of two real variables. 

Consequently when finding zeros of such functions by Newton's method 

we solve systems of two equations. 

Having found one solution we may wish to deflate it out in order 

to find other solutions. Fortunately there is a way of deflating such 

functions that makes sense. In contrast, there is no completely satis« 

factory way of deflating solutions of systems of n real equations in 

n variables for n ^ 2. 

f(x) will be the function to be deflated; it is not analytic. 

Let Ci Cb be the zeros to be removed; we will divide f(r) by 

the polynomial 

k 
P(T) * n (T-CJ . 

j-1   k 

The deflated function g(x) * f(r)/p(T) is not analytic, but the 

analytidty of p will simplify the expressions for the partial derl* 

vatlves of Re g and Im g. 

Let (') represent a differential operator, either . £      or 
3  . Then 3 Imx 

(Re g) '  (Re U  « [Re f Re(J-) - Im f Im(l)l 

• KRe f)Re(l) + Re f (Re £) - Imf (Im(l)) - (Im f)Im(l)] 

and 
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9Rex     Kelp^ReT     Imy9^T " Re("T") » 
P 

where p' represents the complex derivative of p, Mil. Similarly 

and 

and 

9Re9 = RefLiRef     Tm/lx9Imf A .  ,fp' 
FÜT     Re(p> Hi? " Im(pVlröT + Im(   2 >  • 

P 

ilüä. P.c(-VIlwf i T-/1^Ref     . ,fp\ 

P 

iiM« RrfVlmf ,  Tn/lxiRef     _ .fp« 
3 IHIT  

Reyni7+ Ir,vFTiT - Re(Ir) • 

These partial derivatives are now in a form suitable for use in Newton'* 

method applied to a system of two real equations in two unknowns. 
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4.  Computing the Divided Differences Retired in the Equations 

to be Solved for Complex Conjugate Double Zeros in Chapter IV 

Below will be found the recurrences required to compute 

A » A i, and A. , 

the divided differences of section IV.3. \-!e will also obtain deriva- 

tives with respect to Re c and Im c for use with Newton's method. 

\ =  (Im CK)/(Im c) 

so AQ = 0, A1 = 1, and 

Ak = Reuk_., + Re(s W, 

If we write 

and 

we find: 

r  3Ak 
Ak  a Re ; 

£k  nur? 

A0«0, 

k-1 Ak « RecAM + Re(;R-') , 

A0 - A1 - A2 - 0 , 

Aj-RecA^- (k.l)Im(;
k-2) , 

*J - i[ • 0 , 

< ' Vl + Re <<-i + (k-l)Re(;k-2) . 

In order to compute A and A , it. is necessary to start by 

recalling the formulas for updating p ard p'. If the zeros of p 

are c., 1 < i < n, then we could define 

'— ■ ••-"■• ->—-»-^-*«i—«»■» 
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P^.ncc-c.). 

Then we may imagine updating   pfc   by one real zer,   ,f   or by two com- 

plex conjugate zeros   ;+   and   ?+.    Then 

Pn " "I . Pk+1 • (C-^)pk , 

Pk+2= ^2-2(Rec+)C+|c+|2}pk , 

P0 s ° •      Pk+1 
= (C-C+)P£ + pk , 

Pn ■ 0 . 

Pk+2=<C  -2(Re ^)c+|c+|
2}Pi + 2(C-Re c+)pfc 

Pk+1 * (C-^)PJ ♦ 2pk , 

Pk'+2Mc2-2(Rec+)C+|?+|2}pk' 
+ 4(c - Re c+)pj + 2p    . 

k+2 

The formulas for computing   A     and its derlvati 

Imp0    ft 
TiT"0' 

Im pk+l In» PL 
-Tiirr"Repk + Re(c.;+)(lijrJL) , 

ImP^.Re(;2-2(Re;+k+,^
ImPl 

3    /Impk+K     _ Imp, 

ves are as follows: 

3    /Im Pk+2X I« PL 

^T(TfTT-) * 2 R«<^)(iiT> + 2RePk 
+ 2 Re(c-c+)Re p- 

3    > Pt 
Im p k+1. 

TOli ;   ] ' -2 Re(c-i:+)Im p^ - 2 ImP|( 
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Note in passing that 

We now state the 

ImgPl 
Im c 

3     Im ;p' . 
s.         ■     fa     ™ 3Rec   Im ; 

a     Im CP* 
3Imc   Im; 

3     Im pk     Im p'k 

9 Re c ImT =  Im ;   * 

corresponding formulas required for   A    . • 

Rep' +Rec^-.Rep'+Re;?1|-(^E) , 

3 Im p k+1 Imp. Im p. 
3 Re;    Im I 

32      Im P^l 
(3Rec)Z    Im c 

3* ImPk^ 
3 Im ; 3 Re ?    Im ; 

3     ^Pjc+2 
3 Re r,    Im c 

RePk + Tif+Re<^+>3-RTTTFf' 

3     i,,,Kk.Bw__x      3'       ImPk 
Im p. ? 

a     *mPfc ^2 im p. 

Im p. 
2 Re pk + 2 Re(;-;+) (Re pk' + ^1) 

♦Re<^2Re(c+k+|;J2>^^, 
Im p. 

Im p k+2 Im p. 

(3 Re;) 7 "TAT 
Im p. 

4 * "i + *1ST*2 ««,)(* PJ *tWh T5T» 
,Z      /»/„ \_  .   f _    |2> 9 Im p. 

+ +     /ap.r\2   ImT (3Rec)' 
j2 Im P^+2 *     Im p 

TT»T3TieT-Tirr " -4lBpkt2te(t-?*"-I""k*3^-IiT> 
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5.  Computing the Divided Differences Required in the Equations 

to be Solved for Two Real Double Zeros in Chapter V 

The equations which follow provide recurrent methods for computing 

the divided differences required to solve (6.6) of chapter V. 

recall 

Therefore AQ ■ 0, and A, ■ 1. We may verify that 

Aks^k-1 
+ C2 

3Ak  _ 3Ak-l 
^7" ;i"5c 

k-1 
c2Ak-l + «1 

.-1 

« 5, -K±-^ + A 
•1 *1 k-1 • 

3A^     3AK I 
—5. s r  ILL + A 
3;, ;2 3;, + £k-l ' 

The equations for A. . are more complicated. Recall that 
PiK 

V* V^2 

To compute Ap^k when p is given in factored form, it is necessary 

to fix k and develop A . recursively by considering each factor 

of p in turn. To start, suppose p = 1; then A . ■ -A, . Now 
P»K   k 

suppose that A k 1s ?:nown and p Is to be multiplied by a linear 

factor (T-O). Then denoting the new divided difference by A 
♦1 P»k' 

^P.k - (^«^(^-ol-cJIptCjXCj-oJJ/tc,-^) 

" <l;2Ap,k-l " ^p.k ' 



Furthermore 

and 

+1P.k 
C^C, 

u 
3C, +Ap.k-1> 

Up k 
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3 A ", P,k 3A    k , 31    . 
U , r(r        P»K"' + A \ _ -      P»k 
3C, C1U2      35,     +ip,k-l}      °-5cT 

If p were real and a were complex it would be desirable to 

update p by the real quadratic factor (T-a)(T-o). Let A 

represent this updated divided difference: 
+2 P.k 

.kr.2 Z\    Jcr,2 

+2 

3 A 

P.k crc2 

<MAp,k-2 * 2{Re «)«M.k-l + I^S.k 

^•^K.k-2^i^ltr> + N2!^ 
3A P.k-1 

-«•t^v-i^-fir» 
3A 
+2 

The corresponding equation for ~ may be found by interchanging 

Cj and c2- 

Similar methods may be applied to 

V.k 5        V^ 
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Note first that 

P+1(T) 

p;,(t) 

P;,(T) 

(T-a)p(x) , 

(T-O)P'(T)*P(T) , 

(T-O)P"(T)*2P'(T) , 

and 

p+2(x) ■ (x-a)(T-a)p(T) , 

p;2(r) = 2(r-Re O)P(T) + (T-a)(T-i)p'(r) , 

P;2(T) « 2p(t) + 4(T-Re a)p,(T) + (T-o)(T-5)p"(T) 

Then 

+
Ap\k" Wp'.k-l " °V,k + Ap.k • 

3Ap'.k 3A„, 3A-. L     3A, 
H} 

;2U1      ac,       Ap',k-/     a    3^ K}    * 

* p\k * (^A'Vlc-2 " 2<Re «>«l4V.k-l * W%\k 
+ 2Wp.k-l " 2(Re a)Ap.k • 

+2p'*k     „ rlSr   *V.k-2.,. , . .  ,2 8Ap'.k 
-H^-'Wh      3^-+2V.«c-2) + |a|      K^" 

.2(Rea);i{4!^aM+v^i} 

These formulas may be used to calculate   A   .    and   A , .   except 
P»K     P »* 

when k ■ 0 or k ■ 1. In those cases the formulas would require 

A  . whi^h is not defined. 
Pt-i 
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To deal with that difficulty, different formulas for divided 

differences must be used for   k = 0   and   k = 1.    These formulas will 

be based on the finite difference analog of Leibniz' rule: 

A(xy)(erö2) 
xyfe^-xy^) 

Ve2 
x(0,) + x(e2)   y(0.)-y(ej 

>(e1)+y(e?)   x(e,)-x(e,) 

Here x and y are functions of a single variable; the divided 

difference of the product xy is sought for the points (e^e«). 

This and other divided difference Identities may be found in the book 

by Milne-Thomson [23]. 

For our application, x will be p(r) or P'(T) and y will 

be the updating factor (T-O) or (T-aMr-ä). We find that 

+1 
9 A 

K o.o " 9 Vn + 5 . P.O p.O 

;, P.O B (cra)Mc2-a) 3Apf0  ,     , § 

Tc 

♦V'0* 

r^-*?f+ 2*P.o 
+ W 

(c1-a)(C1-5)*(C2-«)(c2-
S). 

P.O 

♦—^ M^-ReaKCg-Rea)) . 

Ap»°  Jc1-a)(C1-ä) + (c9-o)(U-5) 3A_ n 

P(;J 
+
 P(C9) ! 

+ —S  ♦ ?P' (?,)((«,- Re a)(;2- Re o)) , 
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*2 

3 L 
+2 

rCl+C2    on     ^ ,   ,2 PUJ+PUJ 
* p.l =  ^"2— 2Rea)^l^p,0 + W Ap,l + lfr( 2 )   • 

p,l        Ci+U 3A 
£J_ =  (J_l.2kea),y;2_M+ C2(c1+^2-2Rea)Apf( 

+ l°l2-^ll + 5«2^ip,(5i, + p(5i)) ' 

Similarly 

3 A „, 

(Cro) + (C2-a) - ,,r . K %„  - .p'UiJ + p'te,! 

'p',0      ,Ura) + (c2-a)  3A ■  0      , , 3An n U  =   f ! £       1 P  »u + JU + ioM/r   \   .        P,0 
9?i i ?j   3?i    

+^p.,o + ?P <V       ^T" ' 

p'(C )+p'(u) 
V,0 = t S HU^-RecO + ^-Rea)} 

+ (_J L-^ L_)V>0 

+ ((?rRe a) + (;2-Rea))Ap>0 + p^) + p(;2) , 

9
+V'.0       (5,-Re a)+ (5,-tea) p'k,) + p' (c?) 

(c1-a)(;.-ä) + (;;>-o)(c--ä) 3A , n + (5, -Re a)Aplj0 + (-J L_r_i 2__)-^0 

+ ((crRea) + (c2-Rea))^+Apf0 + p'(Cl) . 

3Ci 

Finally 

P'UJ + P'UJ        5,+Co 

+2 
* l^rV,l+2C1C2AM-2(ReaUpJ 
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3 A . , 
+2P '' 
K 1 

= ^^2P"(^) 
+ S2(—^ H - 2(Re a)-gB*l 

1    Sl+S? 
+ C2

{2^1 + (~T"^-2Rect)}Ap' o 

8C 1 •2^1 -^-TBp,0 

Taken together, the foregoing equations provide all the divided 

differences required in chapter V. To inhibit convergence to the 

remaining unwanted solutions it is still necessary to use the defla- 

tion techniques of section 5 of that chapter. 



mmmmtimmmmmmmmmmmmMif nwwww»' - *mmmmmmm*mmmmmmmm 

294 

6.  The Lagrange Multiplier Theorem 

The following corollary of the Fredholm Alternative Theorem 

provides the basis for the use of Lagrange multipliers to find 

stationary points of functions subject to constraints. The vector I* 

is the vector of Lagrange multipliers. 

Theorem. Let B map Cn to c"1. Then 

(for every x e Cn, Bx ■ 0 =*y*x ■ 0) 

if and only if there exists an i* e Cm   such that 

y* « l*B  . 

See Dunford and Schwartz [9, p. 609] for a statement of the Fredholm 

Alternative Theorem in an arbitrary Banach space, and for references 

to a proof. 
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